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their microphysical 
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RESULTS

AIM
Which is the problem?
Giant and ultragiant aerosols (r > 5 μm) distribution and importance
for global meteorology and climate through warm rain processes and
ice nucleation is not well known. They expedit warm rain processes
by acting as GCCN (Giant Cloud Condensation Nuclei[1-3] and are
efficient IN (Ice Nuclei), increasing the ice formation temperature.

What can we do?
Combine different instruments aerosol measurements:
• Lidar and sun photometer are used to retrieve aerosol
microphysical properties between 100 nm and few µm[4] in absence of
thick clouds
• Cloud radar can detect giant and ultragiant aerosols[5]

How do we do it?
• Establishing an aerosol detection methodology with the cloud radar
• Analysing lidar simultaneous measurements and retrieving their size
distributions by lidar inversion codes
• Creating an effective radius radar inversion code
• Using the lidar-radar synergy to obtain the aerosol effective radius

Aerosol detection with a cloud radar
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Where?

1. Lofted plankton layers respect to the insects are

looked for:

2. Using the knowledge from several entomology

studies[6,10-14], the layers are classified:

Lidar simultaneous measurements Effective radius retrieval

Insects evolution thought the day [6-
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The application of the new methodology to the period March 2009 – June 2015 resulted in

the identification of 150 aerosol and 576 insect lofted layers.

Some general statistics of these layers are shown in the next histograms: (a) the monthly

distribution, (b) the daily distribution, and (c) the horizontal wind speed of the layers.

Cloud radar aerosol dataset

The effects of giant aerosols in (a) AOD and (b) accumulated and (c) maximum precipitation:

Lidar simultaneous measurements analysis Lidar and cloud radar synergy

Raman lidars (Nd-Yag) emit at 355, 532 and 1064

nm and receive the elastic backscattered light at the

same wavelengths and the Raman backscattered

light at 387 (N2), 407 (H2Ov) and 607 nm (N2).

By analysing the measured signals, the extensive

and intensive parameters are obtained. The first

depend on the particle concentration, while the

second on the particle type.

Cloud radar and lidar measure the signal backscattered by different targets (λradar>>λlidar), and the particle size retrieval cannot be
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jointly done. For the radar, a look-

up reflectivity and LDR table was

build with a T-matrix scattering

code and is consulted to obtain

the most probable particle size,

shape and refractive index. For the

lidar, an already existing inversion

code is used. Then, the inverted

size parameters from both

instruments are combined.

(a) (b) (c)

(a) (b) (c)

Clour radar aerosol observation
•Giant aerosols can be observed with a cloud radar
•Entomology criteria are appropriate to discriminate aerosols
and insects

•Large number of layers detected (~ 20/year)
•The size range where aerosols can be observed is enlarged

Giant aerosol effects
•The AOD seasonal evolution is in accordance with aerosol
observations

•The precipitation life cycle is modified: lower accumulation
and more probability of intense rainfall, occurring
preferentially ~1½ days after the observation

Synergy
•The particles observed by the two instruments are different
•The size distribution (lidar) and the effective radius (radar)
can be retrieved by inversion methods
•Their merging is currently under investigation to obtain the
enlarged size distributions

The lidar measurements simultaneous to giant

aerosols observations were analyzed. Two examples

are shown: CASE A corresponds to dust (08/05/2013)

and CASE B to smoke (19/06/2013).
CASE A

CASE B

The time-range evolutions of (a) the radar reflectivity and (b) the lidar Range Corrected Signal (RCS) at 1064 nm, (c) the

backscatter profiles, (d) the lidar size distribution and (e) the radar effective radius are the following:

[14]

[15]

Radar inversion:
 reff = 2.34 ± 0.09 

μm

 r = 2.29 ± 0.09 μm 

 N = 31 ± 1 cm-3

 Axis ratio = 1.4 ±
0.2

 RI = 2.27 – 0.57i

(a) (b) (c) (d) (e)

(a) (b) (c) (d) (e)
Lidar inversion: Radar inversion:

 reff = 2.11 ± 0.22 
μm

 r = 1.87 ± 0.19 μm 

 N = 90 ± 10 cm-3

 Axis ratio = 1.3 ±
0.2

 RI = 2.22 – 0.51i

 reff = 0.14 ± 0.018 μm

 r = 0.27 ± 0.05 μm 

 N = 420 ± 140 cm-3

 Spheroid fraction = 
0%

 RI = 1.53 - 0.005i

Lidar inversion:

 reff = 0.55 ± 0.15 μm

 r = 0.13 ± 0.015 μm 

 N = 130 ± 48 cm-3

 Spheroid fraction = 
0%

 RI = 1.46 - 0.004i

CASE B: smoke

CASE A: dust
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