Evaluation of a Hail Size Discrimination Algorithm for the Polarimetric WSR-88D Kiel Ortega, John Krause, Alexander Ryzhkov and Jeffrey Snyder University of Oklahoma/CIMMS and NOAA/OAR/NSSL

Hail Size Discrimination Algorithm

- Fuzzy logic scheme running on Classification Hydrometeor Algorithm (HCA) designations of 'Rain/Hail'
- Uses Z_h , Z_{DR} , ρ_{hv} and 6 different height layers relative to $T_{w} = 0^{\circ}C$ and -25°C to estimate hail size
- 3 hail size classes • Small (D < 25 mm)
- Giant ($D \ge 51 \text{ mm}$)
- giant hail

Described in Ryzhkov et al. (2013, JAMC) Polarimetric characteristics of melting hail. Part II: Practical implications

Observed Distributions & HSDA Modifications

Height Classes:

- 5: $H > H(T_w = -25^{\circ} C)$
- 4: $H(T_w = -25^\circ C) < H < H(T_w = 0^\circ C)$
- 3: $H(T_w = 0^\circ C) < H < H(T_w = 0^\circ C) 1 \text{ km}$ 2: $H(T_w = 0^\circ C) - 1 \text{ km} < H < H(T_w = 0^\circ C) - 2 \text{ km}$
- 1: $H(T_w = 0^\circ C) 2 \text{ km} < H < H(T_w = 0^\circ C) 3 \text{ km}$
- 0: $H < H(T_w = 0^\circ C) 3 \text{ km}$
- Modification of membership functions
- 2. Membership functions for Z_{DR} as functions of Z_h
- 3. Adding a tunable ΔZ_{DR} parameter
- 4. Weighting for each parameter for each height layer
- 5. If a membership function for any parameter < 0.2, the aggregation value was set to 0 for that hail class
- 6. If no hail size class aggregation value exceeded 0.6, 'small hail' was assigned
- 7. If $Z_{DR} \ge 2$ dB, 'large hail' and 'giant hail' were disallowed
- 8. A despeckle method along each radial to downgrade isolated pixels designated 'large hail' or 'giant hail'

• Large (25 mm \leq D < 51 mm) Tended to overestimate hail size and produce too large of areas for

Data and Results

6 April 2012 0011 UTC KHTX Giant hail false alarm area, a result of very high reflectivity, removed as a result of parameter weighting and Z_{DR} threshold of large and giant hail.

30 Jun	e 2014 1	854 UTC
$H(T_w =$	$0^{\circ} C) = 3$	3.82 km

Height Layer	Scoring Method	POD		FAR		CSI	
HSDA V	New	Orig.	New	Orig.	New	Orig.	
	Maximum	0.601	0.604	0.414	0.368	0.422	0.447
$U > U(T - 25 \circ C)$	Common	0.484	0.484	0.102	0.059	0.459	0.470
$I \ge H(I_W = -25^{\circ}C)$	Flex (1 pixel)	0.675	0.705	0.020	0.000	0.666	0.705
	Flex (5 pixels)	0.594	0.624	0.044	0.006	0.578	0.621
	Maximum	0.695	0.760	0.433	0.621	0.454	0.339
$H(I_w = -25^{\circ}C)$	Common	0.557	0.580	0.076	0.113	0.533	0.540
$\leq \Pi \leq$ U(T = 0.00)	Flex (1 pixel)	0.752	0.881	0.012	0.001	0.745	0.880
$H(I_w=0^{\circ}C)$	Flex (5 pixels)	0.657	0.776	0.033	0.017	0.642	0.766
	Maximum	0.768	0.846	0.578	0.789	0.374	0.203
$H(I_w = 0^{-}C)$	Common	0.584	0.606	0.131	0.179	0.537	0.536
$\leq H \leq$	Flex (1 pixel)	0.855	0.948	0.015	0.002	0.845	0.946
$I(I_w=0^{\circ}C) - 1 \text{ km}$	Flex (5 pixels)	0.771	0.863	0.041	0.028	0.746	0.842
UT(TE 00C) 11	Maximum	0.807	0.891	0.596	0.807	0.369	0.188
$H(I_w=0^{\circ}C) - 1 \text{km}$	Common	0.584	0.641	0.118	0.264	0.542	0.521
$\leq H \leq 1$	Flex (1 pixel)	0.898	0.973	0.010	0.006	0.890	0.967
$I(I_W = 0^{\circ}C) = 2 \text{ km}$	Flex (5 pixels)	0.823	0.914	0.029	0.031	0.804	0.888
U(T -0.9C) - 21	Maximum	0.797	0.928	0.484	0.807	0.456	0.190
$I(I_w = 0^{-}C) - 2km$	Common	0.538	0.709	0.091	0.507	0.511	0.410
$< H \le$ $H(T_w=0^{\circ}C) - 3km$	Flex (1 pixel)	0.876	0.982	0.004	0.024	0.873	0.959
	Flex (5 pixels)	0.802	0.948	0.016	0.120	0.792	0.840
	Maximum	0.672	0.949	0.423	0.774	0.450	0.223
$H^{<}$	Common	0.429	0.716	0.069	0.500	0.416	0.418
$H(T_w=0^{\circ}C) - 3$ km	Flex (1 pixel)	0.771	0.983	0.004	0.042	0.769	0.942
. *	Flex (5 pixels)	0.708	0.939	0.008	0.149	0.703	0.806

Severe Hazards Analysis Verification Experiment (SHAVE) calls members of the public thought to have received hail. The data is collected at high spatial resolution with reports typically spaced ~2 km. While locations and sizes are typically precise, temporal information is very imprecise.

Original HSDA

HSDA $(\Delta Z_{DR} = -0.2 \text{ dB})$

Spatial coherency added to the designations HSDA bv restricting aggregation values to a minimum threshold, Z_{DR} threshold for large and giant hail, and by making Z_{DR} membership functions dependent on Z_h

KDMX

The vertical continuity of detection of hail seems to be good based upon visual inspection and calculated skill scores (see right, 'Skill Scores' box for more detail).

Height Layer	Scoring Method	
HSDA V	ersion	
	Maximum	(
C line	Common	(
Combined	Flex (1 pixel)	(
	Flex (5 pixels)	(
$H(T_w=0^{\circ}C)$	Maximum	(
$< H \leq$	Common	(
$H(T_w=0^{\circ}C) - 1$ km	Flex (1 pixel)	(
(65 reports)	Flex (5 pixels)	(
$H(T_w=0^{\circ}C) - 1$ km	Maximum	(
$< H \leq$	Common	(
$H(T_w=0^{\circ}C) - 2km$	Flex (1 pixel)	(
(590 reports)	Flex (5 pixels)	(
$H(T_w=0^{\circ}C) - 2km$	Maximum	(
$< H \le$	Common	(
$H(T_w=0^{\circ}C) - 3$ km	Flex (1 pixel)	(
(864 reports)	Flex (5 pixels)	(
Щ	Maximum	(
$H(T = 0^{\circ}C) = 31$ cm	Common	(
$(1_W = 0 \text{ C}) = 3 \text{ Km}$	Flex (1 pixel)	(
(555 reports)	Flex (5 pixels)	(
	0.5°	T
	broken dov	• vn

Modifications to the original HSDA resulted in more visually coherent HSDA designations along with a large reduction in the FAR with only a slight reduction in overall skill. The POD, and thus overall skill, may be artificially reduced due to poor Z_{DR} calibration. In general, the HSDA should have a POD ~ 0.65 and FAR ~ 0.15 in future evaluations.

Work is ongoing to better relate HSDA designations and polarimetric signatures aloft (altitudes above the melting level) to surface hail fall.

The authors would like to thank the dozens of SHAVE students who collected the database over the past 10 years. Thanks also to Alexis Hunzinger who explored the signatures aloft during the summer 2015 NWC REU. Poster was prepared by Kiel Ortega with funding provided by NOAA/Office of Oceanic and Atmospheric Research under NOAA-University of Oklahoma Cooperative Agreement #NA11OAR4320072, U.S. Department of Commerce. The statements, findings, conclusions, and recommendations are those of the author(s) and do not necessarily reflect the views of NOAA or the U.S. Department of Commerce.

<u> Skill Scores</u>					;ore	<u>s</u>
						Reports were matched to HSDA
POD		FAR		CSI		designations within a 4 km by 4 km
New	Orig.	New	Orig.	New	Orig.	
0.782	0.929	0.465	0.792	0.465	0.205	box centered on the report. The
0.594	0.765	0.136	0.501	0.543	0.432	motohing was accomplished using
0.858	0.981	0.010	0.037	0.851	0.945	matching was accomplished using
0.787	0.935	0.037	0.164	0.764	0.790	the maximum designation, most
0.824	0.813	0.250	0.304	0.646	0.600	common designation and a flavible
0.937	0.969	0.033	0.016	0.908	0.954	Common designation and a nexible
0.900	0.897	0.085	0.119	0.831	0.800	method. The flexible methods
0.859	0.876	0.558	0.816	0.412	0.180	motobod the report's bail size alass
0.680	0.758	0.203	0.352	0.580	0.537	maicheu me reports nam size class
0.918	0.974	0.015	0.003	0.905	0.971	to the correct HSDA designation as
0.862	0.920	0.060	0.055	0.817	0.873	
0.823	0.949	0.427	0.806	0.510	0.192	long as there were enough pixels
0.619	0.797	0.108	0.567	0.576	0.390	with the coareb box (default _
0.885	0.986	0.005	0.040	0.881	0.947	with the search bux (default =
0.799	0.954	0.027	0.204	0.781	0.260	common). These methods help
0.448	0.934	0.060	0.727	0.475	0.209	
0.739	0.982	0.008	0.070	0.735	0.914	evaluate reports near gradients and
0.677	0.935	0.016	0.222	0.669	0.735	the texture of the designations. The
ilt Skill Scores modifications to the HSDA ar			modifications to the HSDA greatly			
by altitude and combined			reduced the FAR			

Discussion

Acknowledgements