Polarimetric Variability of Supercell Storms in Similar Environments

Matthew Van Den Broeke University of Nebraska-Lincoln 15 September 2015

Background

 Polarimetric radar observations used to infer microphysical characteristics of sample volumes; application to supercell storms (e.g., Loney et al. 2002; Kumjian and Ryzhkov 2008; Palmer et al. 2011; French et al. 2015)

 Radar metrics can be used to infer characteristics of supercell updraft and inflow

Research Question and Motivation

• How do polarimetric radar signatures of classic supercell storms vary by environment?

- Do storms in similar environments have similar polarimetric signatures?
- Do these signatures vary significantly between environments?

Methods

- CASE SELECTION
 - At least 2 classic supercell storms present
 - Environment with low spatial variability
 - Prefer storms with base scan <1 km altitude
- Analysis temporal period: well-defined classic supercell structure present

• ENVIRONMENTS: from RUC/RAP sounding at point representative of storm inflow

Cases Selected

Date	Radar Site	# Storms	# Sample Volumes	Tornado Status
2 March 2012	КНТХ	2	30	Tornadic
3 March 2012	KFFC	2	25	Tornadic
15 April 2012	ктwх	2	20	Tornadic
18 February 2013	KSHV	2	14	Tornadic
17 April 2013	KFDR	3	53	Tornadic
22-23 April 2013	ΚνΝΧ	2	21	Non-tornadic
27 April 2013	KTLX	2	25	Non-tornadic
30 May 2013	KTLX	2	23	Non-tornadic

Updraft Signatures

 Stronger vertical wind shear → stronger and broader updraft (e.g., Gilmore et al. 2004)

 Z_{DR} column metrics can be used to infer updraft characteristics

Updraft Strength

• Metric: **1-dB Z_{DR} column** maximum altitude

Updraft Strength

Wilcoxon-Mann-Whitney Test Results

Storm Events	p, compared to other storm in same environment
D, E	0.330
Н, І	0.198
L, M	0.078
Ν, Ο	0.468
1, 2	0.074
3, 4	0.109
5, 6	0.401

Updraft Broadness

 Metric: 0.5-dB Z_{DR} column areal extent at 0.75-1.25 km above the ambient 0°C level

Updraft Broadness

Wilcoxon-Mann-Whitney Test Results

Storm Events	p, compared to other storm in same environment
D, E	0.131
H, I	0.030
L, M	0.136
Ν, Ο	0.189
1, 2	0.171
3, 4	0.464
5,6	0.484

Areal Extent vs. Ambient 0°C Level

Inflow Signatures

- Size sorting along the supercell forward flank depends on *mean storm-relative wind over depth of the sorting layer* (Dawson et al. 2015)
- Leads to the Z_{DR} arc:

Inflow Metric 1: Z_{DR} Arc Width

 Mean width of the 2-dB Z_{DR} arc, over all times in the analysis period

Z_{DR} Arc Width

Wilcoxon-Mann-Whitney Test Results

Storm Events	p, compared to other storm in same environment
Н, І	0.095
L, M	0.476
1, 2	0.405
5,6	0.312

Inflow Metric 2: Z_{DR} Arc Areal Extent

• Areal extent of the **3.5-dB Z_{DR}** arc region

Z_{DR} Arc Areal Extent

Wilcoxon-Mann-Whitney Test Results

Storm Events	p, compared to other storm in same environment
H, I	0.198
L, M	0.326
1, 2	0.002
5,6	0.356

Inflow Metric 3: Z_{DR} Arc Values

 Mean Z_{DR} value within the Z_{DR} arc region, averaged over all analysis periods

Inflow Metric 3: Z_{DR} Arc Values

Z_{DR} Arc Average Value vs. LFC Height

Hail Areal Extent

 Used mean polarimetrically-inferred *hail areal* extent

→ Often larger hail extent in non-tornadic storms

→ Hail often more cyclic in tornadic storms

Hail Areal Extent

Wilcoxon-Mann-Whitney Test Results

Storm Events	p, compared to other storm in same environment
Н, І	0.154
L, M	0.002
1, 2	0.016
5,6	0.480

→ Generally a less-similar metric between storms in similar environments

Conclusions

- Many metrics are similar between storms for a given environment:
 - Z_{DR} column maximum altitude, areal extent
 - Z_{DR} arc width, mean values
 - Hail areal extent, fallout location
- A few metrics are *not* very similar:
 - Z_{DR} arc areal extent
 - Hail cyclicality?
- Indicates value in exploring variability by environment across a large sample of storms

QUESTIONS?

References

- Dawson, D. T., E. R. Mansell, and M. R. Kumjian, 2015: Does wind shear cause hydrometeor size sorting? *J. Atmos. Sci.*, **72**, 340-348.
- French, M. M., D. W. Burgess, E. R. Mansell, and L. J. Wicker, 2015: Bulk hook echo raindrop sizes retrieved using mobile, polarimetric Doppler radar observations. *J. Appl. Meteor. Climatol.*, 54, 423-450.
- Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. *Mon. Wea. Rev.*, **132**, 1897-1916.
- Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. *J. Appl. Meteor. Climatol.*, **47**, 1940-1961.
- Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. *J. Appl. Meteor.*, **41**, 1179-1194.
- Palmer, R. D., D. Bodine, M. Kumjian, B. Cheong, G. Zhang, Q. Cao, H. B. Bluestein, A. Ryzhkov, T. Yu, and Y. Wang, 2011: Observations of the 10 May 2010 tornado outbreak using OU-PRIME: Potential for new science with high-resolution polarimetric radar. *Bull. Amer. Meteor. Soc.*, **92**, 871-891.

Mesocyclonerelative Hail Placement

- Centroid of hail fallout area relative to midlevel mesocyclone center
- Non-tornadic storms generally more variable

