Polarimetric Radar Characteristics of Warm Front-Crossing Storms on 9 April 2015

Cynthia A. Van Den Broeke -Lincoln, NE
Matthew S. Van Den Broeke—University of Nebraska-Lincoln, Lincoln, NE*

Storm Environment

- Warm front moved north across IL; became quasi-stationary by 1800 UTC
- SBCAPE ~2000 Jkg^{-1} in central IL
- 0-6 km shear $\sim 23 \mathrm{~m} \mathrm{~s}^{-1}$ (45 kt) over central IL
- Surface wind southerly south of front; backed
to easterly to the north
- Two anticyclonic supercells developed from storm splits just after 2200 UTC

Tracks of two anticyclonically-rotating supercells on 9 April 2015 (purple). Green-and-white triangles are 1-inch hail reports and green-and-black triangles are 0.88 -inch hail reports. 2300 UTC frontal position is the red dashed line and 0000 UTC frontal position is the red dotted line. Map courtesy Oklahoma Climatological Survey.

[^0]
Z_{HH} (left) and Z_{DR} (right) for storms 1 and 2 as they approach and cross the surface frontal boundary. Dashed line approximates location of front.

- Storm 1: Distinct inflow notch develops; Z_{H} core and $Z_{D R}$ arc broaden
- Storm 2: $Z_{D R}$ arc values increase through 2354 UTC; Z_{H} core slightly broadens

Maximum height of $60-\mathrm{dBZ} \mathrm{Z}_{\mathrm{H}}$ and top of 1-dB Z_{DR} column, with maximum velocity difference for a) storm 1 and b) storm 2. Ambient $0^{\circ} \mathrm{C}$ height is purple dashed line. Period of boundary interaction highlighted in yellow; hail reports indicated by bold black lines.

Summary

- All hail reports near surface front
- Storm 1 shows signs of re-intensification after crossing boundary
- $Z_{D R}$ column top and 60-dBZ height increase
- Velocity difference increases
- Storm 2 collapses just after encountering boundary
- Storm-relative wind responsible for change in low-level $Z_{H H}, Z_{D R}$ structure?

[^0]: *The coauthor acknowledges UNL for providing regular academic year support

