The Performance of the EarthCARE Cloud Profiling Radar in Marine Stratiform Clouds

David Burns1, Pavlos Kollias1, Aleksandra Tatarevic1, Alessandro Battaglia2 and Simone Tanelli3

17th September 2015

37th Conference on Radar Meteorology

1. Dept. of Atmospheric and Oceanic Sciences, McGill University, Canada
2. Dept. of Physics and Astronomy, University of Leicester, UK
3. NASA Jet Propulsion Laboratory, Pasadena, CA, USA
Background

• Marine stratiform clouds play a critical role in Earth’s climate, due to large horizontal coverage, high albedo [1], and regulating effect on marine boundary layer [2]

• Evaluation of marine stratiform clouds in climate models require large scale observational datasets – challenging to conduct from ground-based platforms

• Spaceborne observations offer global coverage and thus are key for monitoring properties of marine clouds

1) Hartman et al., 1992. 2) Stephens et al., 2003
EarthCARE

• Earth Clouds, Aerosols and Radiation Explorer (EarthCARE) Cloud Profiling Radar (EC-CPR):
 • First spaceborne radar with Doppler capability
 • 94 GHz, 2.5 m antenna
 • Improved vertical sampling rate (100 m) and sensitivity (-36 dBZ) compared to CloudSat (240 m and -30 dBZ [4])

• Space-based observations of marine stratus are challenging
 • Receiver noise and surface echoes mask weak cloud and drizzle signals
 • Velocity estimation affected by aliasing, non-uniform beam filling [5], and antenna mispointing [6]

3) Illingworth et al., 2015. 4) Tanelli et al., 2008. 5) Tanelli et al., 2004. 6) Battaglia and Kollias, 2015
Aims

• Here, we investigate how well the EC-CPR captures marine stratiform properties: cloud fraction, boundaries, reflectivity, and Doppler velocity

• EC-CPR simulator produces EC-CPR observations from ground-based radar input data

• Simulated and “true” data are then compared to identify uncertainties and biases
Input data

• Data from ARM Mobile Facility deployments at Graciosa Island, Azores (GRW), and in MAGIC campaign are used as input to simulator

• Observations made from W-band ARM Cloud Radar (WACR) and Marine-WACR (M-WACR)
 • 95 GHz
 • 42 m (GRW) and 21 m (MAGIC) vertical resolution
 • 2 s (GRW) and 0.2 s (MAGIC) integration times
Simulator

- Simulator is as used in Kollias et al. (2014)
- EC-CPR effects added to input data
 - Antenna pattern and range-weighting function
 - Doppler bias due to satellite motion
 - Surface echo
 - Receiver noise (-21 dBZ)
- Velocity corrected for NUBF effects
- V, Z estimates integrated horizontally to reduce effect of noise
Results
Results

- Average cloud fractions over >100 hrs of observations:
 - Lidar: 94 %
 - WACR: 91 %
 - EC-CPR: 49 %, 51 %, 67 %, 75 % (500 m, 1 km, 5 km, 10 km integrations)

- Simulated and true cloud top:
 - RMSD: 73 m
 - Mean difference: 16 m
Impact of sampling volume and surface echo
Impact of sampling volume and surface echo

Limited detection and stretching of thin clouds by EC-CPR shifts cloud peak upwards.

Surface echo masks deep drizzle, shifts drizzle peak down.

The WACR distribution shows two peaks – cloud and drizzle.
Impact of sampling volume and surface echo
Doppler velocity

- RMSD at 1 km and 5 km integrations for SNR>1

- GRW case:
 - 1 km integration: 0.94 ms\(^{-1}\) (1.28 ms\(^{-1}\))
 - 5 km integration: 0.47 ms\(^{-1}\) (0.57 ms\(^{-1}\))

- MAGIC case:
 - 1 km integration: 1.20 ms\(^{-1}\) (1.48 ms\(^{-1}\))
 - 5 km integration: 0.68 ms\(^{-1}\) (0.79 ms\(^{-1}\))
Summary

- Marine stratiform clouds are an important target for the EarthCARE-CPR, yet weak reflectivity and low altitude make them challenging also.
- EC-CPR marine stratus cloud observations are simulated using real cloud scenes.
- EC-CPR detects around 50% of marine stratus observed by ground-based radar at 500 m sampling, rising to around 90% for 10 km sampling.
- Presence of surface echo severely restricts observations below 800 – 900 m.
- Uncertainties of approx. 1 ms$^{-1}$ in Doppler velocity at 1 km integration.
- 5 km integration required to reduce error to approx. 0.5 ms$^{-1}$.
Questions?
References

References

Feature mask

- Feature mask algorithm distinguishes true signals from those due to noise
- Composed of binary mask, surface identification, and along-track smoothing filter
- Mask is array of same size as reflectivity field – value of 1 (significant signal) or 0 (noise)
- Binary mask:
 - Noise level calculated in each vertical profile according to Hildebrand and Sekhon (1974)
 - If $P > P_N + 3\sigma_N$, mask is set to 1
- Effect of surface returns removed by comparison with clear sky case
- Along-track smoothing filter reduces false positives and false negatives
CloudSat-CPR

<table>
<thead>
<tr>
<th>Parameter</th>
<th>EC-CPR</th>
<th>CS-CPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (GHz)</td>
<td>94</td>
<td>94</td>
</tr>
<tr>
<td>Antenna diameter (m)</td>
<td>2.5</td>
<td>1.85</td>
</tr>
<tr>
<td>Altitude (km)</td>
<td>400</td>
<td>700</td>
</tr>
<tr>
<td>Range resolution (m)</td>
<td>500</td>
<td>500</td>
</tr>
<tr>
<td>Vertical sampling rate (m)</td>
<td>100</td>
<td>250</td>
</tr>
<tr>
<td>Horizontal sampling rate (km)</td>
<td>0.5 – 10</td>
<td>1.1</td>
</tr>
<tr>
<td>Sensitivity (dBZ)</td>
<td>-36 (10km integration)</td>
<td>-30</td>
</tr>
<tr>
<td>Beamwidth (degrees)</td>
<td>0.095</td>
<td>0.12</td>
</tr>
<tr>
<td>PRF (kHz)</td>
<td>6.1 – 7.5</td>
<td>3.7 – 4.3</td>
</tr>
</tbody>
</table>