Tropical Rainfall Rate Relations Assessments from Dual Polarized X-band Weather Radars.

Carlos R. Wah Gonzalez Graduate Student Electrical and Computer Engineering Advisors: Dr. Jose Colom, Dr. Rafael Rodríguez Dr. Leyda V. León

- Coverage Problem
- * TropiNet Overview
 - * TropiNet complement NWS radar
- * What is a Dual-Polarized Radar?
 - Polarimetric Variables
 - * Reflectivity
 - * Differential Reflectivity
 - * Specific Phase Reflectivity
- * Disdrometers
- * Rainfall Rate Algorithm
 - * Rainfall Cases
- * Future Work
- * Questions

UPRM NOAA-CREST

* Coverage Problem

- * TropiNet Overview
 - * TropiNet complement NWS radar
 - * Data Comparison
- * What is a Dual-Polarized Radar?
 - * Polarimetric Variables
 - * Reflectivity
 - * Differential Reflectivity
 - * Specific Phase Reflectivity
- * Disdrometers
- * Rainfall Rate Algorithm
 - * Rainfall Cases
- * Future Work

UPRM * Questions

Data Comparison Date: Sept 9, 2014 Time: 18:48:52 UTC

TropiNet Cabo Rojo

NWS NEXRAD

Hail Storm over Añasco Date: Sept 11, 2014 Time:17:26:06 UTC

TropiNet – Cabo Rojo

NWS NEXRAD

- * Coverage Problem
- * TropiNet Overview
 - * TropiNet compliment NWS radar
 - * Data Comparison

* What is a Dual-Polarized Radar?

- * Polarimetric Variables
 - * Reflectivity
 - * Differential Reflectivity
 - * Specific Phase Reflectivity
- * Disdrometers
- * Rainfall Rate Algorithm
 - * Rainfall Cases
- * Future Work

UPRM* Questions

What is a Dual-Polarized Radar?

- Transmitting both horizontal and vertical polarized signals.
- Improve the accuracy of the precipitation.
 - Shape of the hydrometeors
 - * Doppler velocity
 - Drop size Distribution (DSD)

Polarimetric Products

* Reflectivity (Zv, Zh)

- * Differential Reflectivity (Zdr)
- * Specific Differential Phase (KDP)
- * Differential Phase Shift (ΦDP)
- * Correlation Coefficient (CC)

- * Coverage Problem
- * TropiNet Overview
 - * TropiNet complement NWS radar
 - * Data Comparison
- * What is a Dual-Polarized Radar?
 - * Polarimetric Variables
 - * Reflectivity
 - * Differential Reflectivity
 - * Specific Phase Reflectivity
- * Disdrometers
- * Rainfall Rate Algorithm
 - * Rainfall Cases
- * Future Work

UPRM * Questions

Reflectivity (Z)

- * Radar Reflectivity depends on:
 - Number of drops per volume;
 - Diameters of the Hydrometers

dBz Value	Interpretation
< 15	clouds
15-20	light steady rain
30-40	showers or heavier rain
> 50	thunderstorms

- * Coverage Problem
- * TropiNet Overview
 - * TropiNet complement NWS radar
 - * Data Comparison
- * What is a Dual-Polarized Radar?
 - * Polarimetric Variables
 - * Reflectivity
 - * Differential Reflectivity
 - * Specific Phase Reflectivity
- * Disdrometers
- * Rainfall Rate Algorithm
 - * Rainfall Cases
- * Future Work

UPRM * Questions

Differential Reflectivity (ZDR)

- * Difference between the horizontal and vertical polarizations.
- * Typical values: -4 to 7 dB
- * Use to detect:
 - * hail
 - Melting layer
 - * Tornado Debris

* For ZDR >1 to 5 dB Large Drops

- * Coverage Problem
- * TropiNet Overview
 - * TropiNet complement NWS radar
 - * Data Comparison
- * What is a Dual-Polarized Radar?
 - * Polarimetric Variables
 - * Reflectivity
 - * Differential Reflectivity
 - * Specific Phase Reflectivity
- * Disdrometers
- * Rainfall Rate Algorithm
 - * Rainfall Cases
- * Future Work

UPRM * Questions

Specific Differential Phase (KDP)

- Range derivative of the differential phase shift along a radial.
- * Non meteorological echoes aren't shown
- * Use to detect:
 - * Heavy rain mixed with hail
 - Detect the Drop shape
- * Example:
 - * For hail KDP near o deg/km
 - * For rain KDP between 0 and 5 deg/km

UPRM NOAA-CREST

- * Coverage Problem
- * TropiNet Overview
 - * TropiNet complement NWS radar
 - * Data Comparison
- * What is a Dual-Polarized Radar?
 - * Polarimetric Variables
 - * Reflectivity
 - * Differential Reflectivity
 - * Specific Phase Reflectivity
- * Disdrometers
- * Rainfall Rate Algorithm
 - * Rainfall Cases
- * Future Work

uprm * Questions

Disdrometers

- * Electronic Rain Gauge
- * Measures:
 - * Drop Diameters
 - * Drop fall velocity
 - * Drop quantity
 - * Classify in different hydrometers
 - * Rain Intensity
 - * Radar Reflectivity
- * Estimates Radar Reflectivity from rain fall data

- * TropiNet Overview
- * TropiNet Overview
 - * TropiNet complement NWS radar
 - * Data Comparison
- * What is a Dual-Polarized Radar?
 - * Polarimetric Variables
 - * Reflectivity
 - * Differential Reflectivity
 - * Specific Phase Reflectivity
- * Disdrometers
- * Rainfall Rate Algorithm
 - * Rainfall Cases
- * Future Work

UPRM * Questions

NOAA-CRE

Rainfall Rate

- The estimation and prediction of the rainfall rate is important to safe home, properties, and most important lives.
- * Algorithms to estimate Rainfall Rate:
 - * $Z_h = aR^b$
 - * R= c1 K_{DP}^{b1}
 - * $R(Z_h, Z_{DR}) = a Z_h^b Z_{DR}^c$
 - * $R(K_{DP}, Z_{DR}) = a K_{DP}^{b} Z_{DR}^{c}$
 - * $R(Z_h, K_{DP}, Z_{DR}) = 1.0624 Z_h^{0.3} K_{DP}^{0.5} Z_{DR}^{-0.84}$

UPRM NOAA-CREST

UPRM

Case of Study: May 8,2014

Rainfall Rate: Disdrometer Parameters

Norman, Oklahoma September 2015

Rainfall Rate algorithm with Reflectivity (Z) and Differential Reflectivity (Z_{DR})

37 AMS Radar Conference Norman, Oklahoma September 2015

Rainfall Rate algorithm with Specific Differential Phase (KDP) and Differential Reflectivity (ZDR)

Case of Study #1: September 19,2014

Norman, Oklahoma September 2015

Rainfall Rate with Multidimensional Nonlinear regression

Z= Radar reflectivity; R= Intensity

CAAM UNIT

Rainfall Rate algorithm with Reflectivity (Z) and Differential Reflectivity (ZDR)

Rainfall-TropiNet-CaboRojo-20140919-192541 in/hr 70 20 60 15 50 Range (km) 5 40 30 20 10 -5 5 Range (km) 15 20 -10 10 -5 0 Rainfall Rate algorithm with Specific Differential Phase (KDP) and Differential Reflectivity (ZDR)

UPRM NOAA-CREST

- * TropiNet Overview
- * TropiNet Overview
 - * TropiNet complement NWS radar
 - * Data Comparison
- * What is a Dual-Polarized Radar?
 - * Polarimetric Variables
 - * Reflectivity
 - * Differential Reflectivity
 - * Specific Phase Reflectivity
- * Disdrometers
- * Rainfall Rate Algorithm
 - * Rainfall Cases

* Future Work

UPRM * Questions

Future Work

- Develop the Rainfall Rate Algorithm with the polarimetric variables such as:
 - * KDP
 - * ZDR
 - * Combination of Polarimetric Products
- Implement a rainfall rate algorithm in the Off-the-Grid
 Single Polarized X-band Radar

Questions?

