

Dual-Wavelength Humidity Profiles Using S-PolKa During the DYNAMO Field Campaign

Introduction

- NCAR S-PolKa radar makes simultaneous S- and K_a-band measurements Matched beam widths Matched range gates
- Rayleigh reflectivity differences related to K_a-band attenuation by liquid and gas
- The atmospheric attenuation at K_a-band can be related to the path-integrated humidity

Humidity Retrieval Method

- Exclude non-Rayleigh echoes :
- Bragg scatter
 Drops > 1 mm
- Bird echoes
 Partial beam blockage
- ➢ Ground clutter ➢ Side-lobe ...

• Estimate atmospheric attenuation (A_g)

- Compare S- and K_a-band reflectivity
- Avoid contamination by liquid water attenuation
- Average 10 or more range gates to reduce measurement noise
- Create ray segments
- Radar to cloud
- Cloud to cloud
- $\succ A_{\sigma}$ (dB km⁻¹) = (dBZ_S dBZ_{Ka})/range Attenuation errors decrease with increasing range

• Humidity retrieval error decreases with range!

A plot of the error in specific humidity (g m⁻³, y-axis) as a function of range (km, x-axis) for an error in the difference between S- and K_a-band reflectivity of 0.5 (solid line) and 1.0 (dashed line) dB

S-band reflectivity

• Estimate Humidity

Use microwave propagation model to develop relationship between specific humidity (SH) and A_{g} . Run model many times over possible range of atmospheric conditions (P, T and SH) □ Fit curve of SH as a function of A_g (shown below for the Caribbean and Colorado) Plug estimated A_g into best fit

- equation to compute SH

Scott Ellis and Jothiram Vivekanandan

National Center for Atmospheric Research, Boulder CO

One-way atmospheric ttenuation (dB km⁻¹) plotted as a function of frequency GHz) for different water apor content values (g m⁻³ from Lhermitte, 1987).

S-PolKa at DYNAMO

- Located on Addu Atoll, Maldives in the central Indian Ocean
- NCAR S-PolKa radar deployed from 1 October, 2011 to 15 January, 2012
- Operated 24/7
- First deployment of real-time automated humidity retrieval technology
- 3 hourly soundings ~ 8 km from S-PolKa
- Soundings provide opportunity to verify dual-wavelength humidity retrieval

Humidity Verification

- Increasing the region of radar retrieved humidity in the comparison impacts statistics Bias increases
 - RMSD increases
 - Correlation decreases
- Most likely due to natural spatial variations in humidity

Data filter (Sounding site at	RMSD	Bias	Corr	# point
azimuth = 140 deg, range = 8km)				
138>az>142, 10> range>16	1.57	-0.14	0.79	44
130>az>150, 10> range>16	1.73	-0.26	0.75	276
130>az>150, 10> range>25	1.75	-0.54	0.74	517
110>az>170, 10> range>25	1.77	-0.17	0.68	1533
50>az>230, 10> range>25	1.86	0.03	0.62	3867
all az, all range	2.12	0.53	0.57	9878

• Humidity retrievals over 4.5 month period compared to soundings in close proximity

- \blacktriangleright Azimuth <u>+</u> 2 deg from sounding \geq 10 km > Range > 20 km from radar
- 44 data points of comparison Bias between sounding and radar humidity = -0.14 g m^{-3} • RMSD = 1.57 g m^{-3}
- Correlation coefficient = 0.79

Spatial Humidity Variations in DYNAMO

- Humidity in the tropics is highly variable spatially and temporally • The dropsonde data at right were all collected within 10 minutes in an ~20 km radius ring around S-PolKa • Water vapor can vary by more than
- 4 g m⁻³ between these nearby measurements!
- Single soundings not representative \bullet of the environment mean
- Single soundings do not capture variability of humidity

NCAR

Radar-Retrieved Humidity from DYNAMO

• Humidity retrievals from 1 hour of data and 360 degrees of azimuth show large variance (top left)

- Parsing the data into 45 degree sections over 1 volume time (15 min) results in coherent profiles
- The parsed profiles show the spatial and temporal differences in the low level humidity
- The mean of 1-hour of radar-retrieved humidity (black line) represents larger, known, spatial and temporal scales

• S-PolKa was deployed for 4.5 months in tropical Indian Ocean

- Dual-wavelength radar humidity retrievals were verified with soundings
- The humidity retrievals can measure more of the spatial and temporal variability of the tropical humidity than soundings in many situations
- The mean humidity retrievals represent larger scale environments that
- The spatial and temporal variability AND mean of humidity are critical for modeling/understanding tropical weather system development and evolution