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Extensions to the Gaussian Model

of Ground Clutter in Dual-Polarized Weather Radar

REINO KERANEN
Vaisala Oyj

. Gaussian model (GM) and ground clutter (GC)

 in Doppler weather radar, complex antenna voltages from Rayleigh
scatterers of precipitation and from thermal noise are distributed in
bi-variate Gaussian (Bringi, Chandrasekar, 2001; 1986)

4 Gaussian power spectrum of GC echo (vp =0, o5~0);
few assumptions about ground properties.

J GM can be applied to each receiver channel H and V, or combined.

 GM is a model of echo data. Needs input from model(s) of scatterers.

1 Known models exist for hydrometeors (Rayleigh) and thermal noise.

d GC?

. Empirical knowledge of GC echo features

d Zrnic et al. 2005: co-polar correlations in GC echo
(“..no attempt..to tie our measurements to the physical properties of ground objects”)

4 JPOLE (Ryzhkov et al. 2005): fuzzy method of spatial textures of

1 B! - / \ fl

o - i ! » . Y.

”g g \//\XX ”{ J%\ /A\ f {H% i\& 1& i B f i F
- - uoonn, [ it PO S S L e e il e
B e B W e = e

NN LA\ 8 o e ,;\

17 \\ A W —— ¥ L

d Gourley et al. 2007: spatial textures (variability) of -i) ®yp and of -ii) Z,
and mean value of -iii) p.,
1 Hubbert et al. 2009: in addition, clutter phase alignment CPA, SPIN-Z

O Hubbert et al. 2009: models of RaM(~GM), RiM(~GM+DC), MRM(~RiM
+leaves). RiM ok in terms of CPA for a particular data set.
1 Does RiM describe base band data, generally? Is GC = GM+DC?

lll. Dual-polarization base band data {(1,Q).,(I,Q),}
from various types of GC
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 (A): distinct point-like GC targets: constant (arbitrary) differential phase
(B,C,D) extended GC targets: variable differential phases and relative amplitudes
< - coherent superposition of echoes from many fixed GC targets.

d For point-like GC, the GM appears ok while ambiguous due to narrow
spectral width. High co-polar correlation possible between H and V echo.
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V. Extension of GM into variably sized (N_;) sets of
GM point-like spatially distributed targets

 Analogous to the "RaM”/"RiM” models of Hubbert et al. 2009.

1 Do not describe GC as homogenous feature. Let the power scale free.
d Instead, interpret the GC echo either as an apparent point target
N.=1: GM (Bringi and Chandrasekar, 1986) for a single ground target, or
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N.>1 as extended ground clutter of spatially distributed rough surfaces
(Long,2001) modeled as multiple GM(vp =0, c5~0) targets.
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specific features in GC echo get explained as effects of superposition;
the sub-structured model of GC seems describing the variable features
of dual-polarization base band data {(1,Q),,(1,Q),};

d
d
=» a footing for generalized quantitative model of GC in dual-polarization

V. Does it work?

4 consider echo from areas of fair weather in urban environment, SNR;, >10 dB.

 define "point-like’ (A) enriched sample as gates with P, /<P, > >20 dB where
<..> is the local mean, max echo gates excluded. Then consider |p.,| as measure
of intrinsic variability of @y, Consider pdf(dyp), its width in view of (|p.|,pp)

(University of Helsinki; WRK2002010) H,V correlation in distinct types of ground clutter

o ';ﬂ:'-"'v,- ”?3;?*3‘:?‘* 3 -. " (B,C,D) (A) 0.25 N | | | |

O Point-like clutter (7%)
Extended clutter (93%)

high |pe,|

component in
point-like clutter
~enrichment

Relative occurrence
o
—

B (Bringi, Chandrasekar, 2001

wwwwwwwwwww
NNNNNNNNN

10%log(2/(1-Ipuv(0)1) )
tial phase from ground clutter

=0.99<|Rhohv| (7%)

0.95<|Rhohv|<0.99 (16%) ‘

= 0.8<|Rhohv|<0.95 (33%)

0.6<|Rhohv|<0.8  (30%)

high |p,| with

arbitrary while
not uniformly
random ®pp

00.0<|Rhohv|<0.6  (14%)

VI. Conclusions

v' There is a rich feature set in the base band data {(I,Q),,(I,Q),} acquired from
echoes of GC, by dual-polarization Doppler weather radar, within the approximately
Gaussian power spectra. These feature information appear partially hidden in the
moment estimators which are averaged data.

v A hypothesis of homogenous GC appears too rigid. Common sense suggests that
distinct types of GC can be distinguished, confirmed by data.

v As 15t model extension, we may resolve the cases of point-like GC and of
extended GC (as superposition of point-like targets), case-by-case.

v' Such sub-divisions may turn a consistent model of the dual-polarization base band
data {(1,Q),,(I,Q),}, thus providing a basis for quantitative understanding dual-
polarization features in the GC echo component.

v" Prominent uses: ground clutter mitigation, identification of clutter targets as signal.
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