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Compressive Sampling and Real-Time Data 

Transportation in MPAR Backend System 

 

 
Abstract—Massive data transportation has been an important 

bottleneck for the Multi-functional Phased Array Radar 

(MPAR), as the diversified waveforms require increasing 

sampling speeds for traditional quadrature sampling. In this 

work, we propose a method that “compresses” the quadrature 

(I/Q) data to reduce the data link bandwidth and transaction 

time between the receiver front-end and the processing unit of a 

phased array system. 
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I. INTRODUCTION  

A traditional coherent radar receive channel generates in-
phase and quadrature data signals in either analog or digital 
forms. These signals are transported to the specialized signal 
processor units for pulse compression, detection and tracking. 
With the extensive usage of advanced waveforms, the 
bandwidth of the transmitting pulses can be quite large. 
Accordingly, based on Nyquist–Shannon sampling theorem, 
the ADC’s increasing sampling speed may introduce massive 
amount of data transactions. As an example, for a single dual-
polarized channel, if the signal bandwidth is 20 MHz and 
ADC’s resolution is 12 bits, the transmitting rate should be at 
least 960 Mbps per channel. For an envisioned MPAR system 
with 200 dual-pol channels, the data rate at first line of 
beamformer can be higher than 192 Gbps. Even with advanced 
data link technologies today, this is still a tremendous 
challenge.  

Currently, RapidIO, Ethernet and PCIe are the main options 
of fundamental data link protocols. RapidIO is reliable, 
efficient, and flexible. Compared with PCIe, which is 
optimized for hierarchical bus structure, RapidIO is designed 
for both point to point and hierarchical models. This feature 
can make the interconnection fabric more flexible. Further, 
RapidIO have a better flow control mechanisms than PCIe. At 
the physical layer, RapidIO offers PCIe-style flow control retry 
mechanism, which is based on tracking credits inserted in the 
packet headers. In addition, RapidIO includes a virtual output 
queue backpressure mechanism. Based on this capability, 
switches and endpoints can learn whether destinations are 
congested or not [1].  

Even with these advanced data link technologies, the large 
communication bandwidth is still a tremendous challenge. In 

order to further reduce the data stream rate without loss of 
information, we propose to incorporate compressive sampling 
(CS) concept into the MPAR backend system. According to the 
compressive sampling concept, when the signal matrix is 
sparse, we can sample the radar signal incoherently with a 
much slower rate than the Nyquist sampling rate [2], which 
may translate into saving of communication bandwidth, 
reduction of signal processors, and eventually lower costs. 
When we introduce the CS concept into array signal sampling, 
there are two specific issues we may pay attention to: (1) 
Robustness of signal recovery from noisy data, especially for 
the received signals before pulse compression. Indeed, CS 
processing can tolerate a proper level of noise. However, for 
actual radar data, useful signal may be immersed in the noise, 
which may lead to errors or distortions in signal recovery. (2) 
Recovery computing time and resources requirement, and 
whether it can fit in a digital receiver’s front-end needs to be 
concerned. Also, the computational resources required by CS 
processing, and the additional latency that adds in the MPAR 
receiver chain, should not offset too much the benefits it 
brought in for data transportation bandwidth reduction.  

 

II. MPAR BACKEND SYSTEM MODELING 

A. System Archietecture 

 CS as well as data transportation protocols are evaluated on 
a generic phased array radar backend testbed, which consists of 
a realistic software simulator and a partially-implemented, 
small scale hardware DSP network. Figure 1 shows the top-
level, generic MPAR backend system diagram. After the signal 
is sampled by ADC, board to board connections within a 
simulated chassis using RapidIO is used to transport the I/Q 
samples, which results in better performance than using 
Ethernet for the box-to-box interconnections. For a large scale 
phased array system such as MPAR, it may contain about 200 
receive channels per face [3]. For such scale, we may combine 
the data from small number of channel first, and then transmit 
the entire face data out by using RapidIO through back panels. 
An illustration of the simulated interconnection fabric is also 
shown here. In our model, each front-end ADC board (which 
can be inserted in the back-panel) can contain several FPGAs. 
Each FPGA packs a number of channels of digitized data, and 
sends the packaged data through a data link. As operations of 
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these front-end boards are parallel and independent, we may 
easily adjust the numbers of front-end board inserted into 
chassis backplane according to the number of array channels. 
On the back-panel, a small number of high performance 
RapidIO switches can be used to handle the heavier traffic. In 
summary, this model represents a robust, scalable, and efficient 
generic backend system, and is compatible with current 
military and civilian open system standards.   

 

Figure 1: Top level diagram of the MPAR backend system.  

 A more detailed realization and breakout architecture for 
the current simulation testbed is shown in Figure 2. Three 
different types of backend boards are used in the fabric, and as 
the data moves more towards the back, more DSPs are utilized. 
The boards are:  (1) Receiver front-end/data transmitting board, 
(2) DSP processing board, and (3) back panel. With current 
low-cost COTS components, the data transmitting board can 
capture up to 40 independent channels, and these signals are 
digitalized by ADC and packed up by FPGAs. On the back 
panel, 12 RapidIO switches can handle up to 2.8 Tera-bit per 
second data rate. The materials costs for an actual 
implementation of a 200-channel backend will be less than 
$400K.  

 

Figure 2: Break-out of back-panel system for the simulation 

testbed.   

B. Simulated Data transportation performance 

Testbed simulation was done using MATLAB, Code 
Composer Studio (CCS) integrated development environment 
and RapidIO System Modeling Tool provided by Integrated 
Device Technology, Inc. In a small scale model, we simulated 
realistic sampling data traffic from RF front end to 
Beamforming DSP, as well as Beamforming DSP to Pulse 
Compression DSP. In this system, we have 24 C66x DSP 
cores, and 4 ARM cores to handle 24 channels with 8192 range 
gates. The data coming from 24 channels will be generated into 
20 beams by 16 DSP cores, and then 8 DSP cores is 
responsible for Pulse Compression and Doppler Processing. 
ARM cores would handle the data traffic between Pulse 
Compression and Doppler Processing. Assuming Nyquist 
sampling speed at front-end, the estimated transmission time 
from a front end FPGA to Beamforming DSP is 904 µsec for 
one pulse. This latency performance can meet most of the real-
time surveillance requirements of NSWRC [4], however, 
limited signal bandwidth is assumed and only basic matched 
filtering algorithm is utilized.  

One of the key challenges to achieve hard-real-time using 
embedded DSP processors is how to assign tasks to each DSP 
core. As the hardware resources on DSP core is limited, 
Beamforming weight vector is calculated from outside and 
transmitted to DSP core. For the rest of beamforming, which 
multiplies each channel’s samples by weight vectors, DSPs 
needs ~1.5 msec.  After that, Pulse Compression needs another 
1.5 msec to complete. The data transmission between 
Beamforming and Pulse Compression is done by using EDMA 
(Enhanced DMA), which could send or receive the data 
without interfering with DSP. With help of EDMA, calculation 
can be performed in parallel with data communication. As 20 
beams cannot evenly divided into 8 DSP cores, so some of 
DSP cores would be free from Pulse Compression task. 
Doppler Processing is performed on those stall cores during 
this period. The data corner turn, in which rearrange rang-
aligned data to pulse-aligned, is performed by ARM core using 
EDMA, which costs 1.1 msec.  The following Figure 3 
sketches the real-time time-line for initial radar processing. 
Further processing will be then added, such as weather product 
generation and target tracking. 

 According to the Figure 3, the shortest PRI (Pulse 
Repetition Interval) being supported is ~ 1.5 msec, or 667 KHz 
for PRT.  Faster processing can be achieved by adding more 
parallel computing hardware (similar to the boards shown as in 
below). Calculation load of Doppler Processing is much less 
computational demanding compared to the Beamforming and 
Pulse Compression. 

 As the front-end FPGAs and the DSPs have abundant 
resources that can be used to implement data 
encoding/compression and data decoding/recovery, we would 
consider a CS module added into both ends to help reduce the 
communication bandwidth. The testbed also simulates the 
realistic radar returns through each individual array channel, 
which supports evaluation of basic compression and evaluation 
performance in this work. 
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Figure 3: Small scale system timeline 

III. COMPRESSIVE SAMPLING 

A. Introduction 

Compressive sampling or CS has been introduced since 
2006 [5]. This novel sampling method challenges the 
commonly well know Nyquist sampling rate that requires the 
sampling speed higher than two times of signal bandwidth [2], 
and it can recover certain signals by using fewer samples. For 
the concise representations of original signal, two fundamental 
premises should be met: sparsity and incoherence. For the 
sparsity, it means that when the signal is projected onto a 
suitable basis, a large number of coefficients of signal should 
be small enough to be ignored. For a certain signal, if it has s 
non-zero coefficients, it is said to be s-sparse. As s increases, it 
becomes harder to sense and reconstruct the original signal [6]. 
The incoherence implies that any two elements in the sensing 
basis Φ and representation basis Ψ should have low coherence. 
The coherence between Φ and Ψ is measured by   

 (Φ, Ψ) = √𝑛 ∙  max
1≤𝑘,𝑗≤𝑛

| 〈ϕ𝑘𝑗
〉 |   

 In which μ is the incoherence property, n is the number of 
elements in the original signal, and k, j are indices of the basis 
functions. In other words, the sampling and representation 
basis should be concerned as low coherence pairs. For 
example, we may choose spike basis 

𝑘
(t) = (t − k)  as 

sensing matrix, and Fourier basis 𝜓𝑗(𝑡) = √𝑛𝑒−𝑖2𝜋𝑗𝑡/𝑛  as 

representation basis [4].  

 Besides sparsity and incoherence, in order to analyzing the 
performance of different CS algorithms, restricted isometry 
property (RIP) is introduced. RIP characterizes isometry 
constant δ2s of a matrix such that 

(1 − 𝛿2𝑠)‖𝑥1 − 𝑥2‖𝑙2
2 ≤ ‖Θ(𝑥1 − 𝑥2)‖𝑙2

2 ≤ (1 + 𝛿2𝑠)‖𝑥1 − 𝑥2‖𝑙2
2 

 ϴ is the reconstruction matrix, which is the product of Φ 
and Ψ. If δ2s is sufficiently less than one, This implies that the 
all pairwise distance between s-spare signals, such as vector x1 

and x2, can be well preserved in the measurement space. That 
means measurement matrix contains the sufficient information 
in signal of interest.  

 

B. CS performance in array channels 

 Different application may have various requirements or 
limitation to use CS. In the communication system, it requires 
the CS algorithm for speedy spectrum sensing; in medical 
imaging processing, like magnetic resonance imaging (MRI), 
with benefits for patients economics, the scan time reduction is 
the thing researchers pay more attention to. In radar 
application, the signal to noise ratio (SNR) may be so low that 
the signal can be immerged within the noise; hence, robust 
signal recovery from noisy data is a crucial point for radar 
sampling. Figure 3 shows the mean square error (MSE) 
between reconstruction data and original signal (noise-free), 
and error compared to the original signal with noise. We can 
see the CS can actually suppress noise when SNR is low. This 
is because this signal (pulse) is sparse, and the noise is widely 
spread the entire spectrum, as a result, the reconstruction 
process would ignore those small variation produced by the 
noise.  

 

Figure 4: Reconstruction error vs SNR. 

As SNR increase, the MSE decreases. From Figure 3 we 
can notice that when SNR is larger than 6 dB, the 
reconstruction data have the similar result as original data with 
noise. In other words, the compressive sampling can be used in 
the radar application even the SNR is low. Another important 
aspect for CS implementation is the algorithm efficiency. 
There are so many reconstruction algorithms existing, such as 
Basis Pursuit, Matching Puersuit, and Message Passing. 
Among those algorithms, the greedy iterative algorithm is easy 
to implement and has high speed of signal recovery. It solves 
the reconstruction problem by finding a optimal result 
iteratively. Within the framework of greedy pursing, we select 
the Orthogonal Matching Pursuits (OMP) [7] as our key 
compressive sensing algorithm. For a signal with length n and s 
sparsity, OMP can reliably recover this signal by using 
𝑂(𝑠 log 𝑛) measurments. The complexity of OMP algorithm is 
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𝑂(𝑠𝑚𝑛). m is the number of measurments. Figure 4 shows the 
camparisioin between the OMP and Basis Pursuit, where 
n=600, and m=4s. It can be seen that OMP have better 
performance than the basis pursuit. However, when the signal 
is not sparse, the recovery becomes costly.  

 

Figure 5: Computational time comparison of two CS algorithms 
on AMD Opteron 6128 (2GHz)/MATLAB regarding to different 
degrees of channel signal sparse (S).  

 

 

Figure 6: Structure of a compressive sampler. 

C. Structure of low rate sampling system 

To facilitate implementation, canonical or spike basis can 
be used. A proposed sampling structure is shown in Figure 5.  
The low rate sampling system performs as random 
demodulation scheme [9]. The signal, x(t), is multiplied by 
chipping sequence, which alternates between -1 and +1 at the 
Nyquist rate or higher. The purpose of this operation is to 
spread the baseband frequency content to the entire spectrum. 
And then, the altered signal goes through a bandpass filter 
centered at center frequency f0. At last, ADC can sample the 
signal at the fcs. fcs is k times lower than the signal center 
frequency f0.  

D. Recovery from the undersampled data 

Once the compressed signal samples reach the receiver 
end-node, the original signal can be recovered by using OPM. 
A simple simulation using backend testbed is shown here for 
illustration. Only one channel is used for this test, and the radar 
parameters are listed in Table 1. Figure 6 and 7 show the 
comparison between original received signal and reconstructed 
signal for a point target.  Figure 6(a) shows the scenario when 
SNR is 9 dB before pulse compression. There is no significant 
difference between the original and reconstructed signals 

(noise shows some difference but not our concern here). In the 
second case shown in Figure 8 and 9, the SNR is down to -2 
dB. Figure 7 and 9 also compare the reconstructed post-
compression signals. In both cases, the target signature can be 
recovered, while better performance is expected for higher 
SNR.  

Table 1: Array channel simulation parameters 

Parameter Values 

Pulse bandwidth 5 MHz 

Pulse width 10 µsec 

PRF 6 KHz 

Nyquist sampling rate 10 MHz 

CS sampling rate 5 MHz 

Number of range gates 1700 

Number of range gates for LFM pulse 102 

 

 
(a) 

 

 
(b) 

Figure 7: (a) Simulated point target return (LFM waveform, I 
samples only) before pulse compression, SNR= 9 dB. (b) 
Reconstructed point target return from signals with ½ original 
sampling rate (5 MHz).  
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   (a) 

 
(b) 

 
Figure 8: (a) Simulated point target return (amplitude) after 

pulse compression, pre-compression SNR= 9 dB. (b) 
Reconstructed pulse compression output from signals with ½ 
original sampling rate (5 MHz). 

 

(a)  

 

(b) 
Figure 9: (a) Simulated point target return (LFM waveform, I 

samples only) before pulse compression, SNR = -2 dB. (b) 
Reconstructed point target return from signals with ½ original 
sampling rate (5 MHz).  

 

(a) 

 
(b) 

Figure 10: (a) Simulated point target return (amplitude) after 
pulse compression, pre-compression SNR= -2 dB. (b) 
Reconstructed pulse compression output from signals with ½ 
original sampling rate (5 MHz). 
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IV. CONSLUSIONS AND FUTURE WORK 

 The potentials of using compressive sampling technology 
in large scale MPAR to reduce the data transportation 
bandwidth requirements are being analyzed. Initial results 
using software backend modeling testbed are promising, while 
there are much more work can be done, such as (1) Trade 
analysis for more realistic, end-to-end tests using the backend 
testbed to precisely predict benefits vs overheads. (2) CS 
algorithms may be improved to better handle situations where 
SNR is low. (3) In order to reduce the computation loads for 
MPAR, we may transform the low rate sampling data into 
frequency domain first, measure them, and then reconstruct the 
data back into the frequency domain. This can reduce half of 
Fourier transform computation in the following pulse 
compression stage. (3) We may use available hardware DSP 
system to evaluate the CS performance in actual embedded 
processor, and demonstrate real-time radar data transportation 
applications.  
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