The Frequency Diverse Pulse-Pair algorithm for Doppler velocity estimation

V. Venkatesh1,2, L. Li1, M. McLinden1, M. Coon1, and G. Heymsfield1

1NASA Goddard Space Flight Center, Greenbelt, MD
2Science Systems and Applications Inc, Lanham, MD

1. Introduction

Space-borne measurements of Doppler velocity, although capable of adding valuable insights on latent heating (et al. (2006)) and microphysics (Wilson et al. (1997)), remain under-demonstrated. This is because massive spacecraft speeds along with the use of a non-trivial beamwidth combine to produce large spectrum widths (Amayenc et al. (1993), Kobayashi et al. (2001)). By the Wiener-Khinchine theorem, the Doppler spectrum and the auto-correlation function form a Fourier pair. Consequently, broad Doppler spectra leads to signal decorrelation so rapid that there is little coherence on timescales comparable to PRFs needed to sample the entire troposphere. Techniques to resolve this Doppler-Range ambiguity dilemma offer a possible solution. For example, the Polarization Diverse Pulse-Pair (PDPP) (Pazmany et al. (1999)) transmits a two pulse train with orthogonal polarizations. The idea is that the two-pulse train provides adequate sampling of the Doppler spectrum, while the the PRT can be adjusted independently for range coverage. However, finite polarization isolation may overwhelm retrievals close to the surface (Battaglia et al. (2013)). A possible alternative is the use of frequency diversity (in lieu of polarization diversity). If proven practical, this frequency diverse pulse-pair method would potentially provide low-cost Doppler velocity retrievals from space-borne platforms.

2. Methodology

a. Conceptual description of FDPP algorithm

Two pulses at center frequencies f_1 and f_2 are transmitted separated by some lag ΔT. While retaining ΔT, the order of the pulses is reversed every alternate transmission. From the receive channels at f_1 and f_2, the pulse-pair phase estimate of the two sequences are individually accumulated and stored as $\Delta \phi_{\text{order1}}$ and $\Delta \phi_{\text{order2}}$. Finally Doppler velocity is estimated from the sum of the two individual pulse-pair phase estimates (denote as $\Delta \phi$). Note that the use of two closely spaced radar frequencies introduces two primary sources of error. First, a “beat” phase that scales as a function of range is introduced. Nonethe-less, this term vanishes when the phases of the f_1-f_2 and f_2-f_1 pairs cancel out in the expected value sense. Second, since there is little correlation between the f_1 and f_2 pulses, the variances of the f_1-f_2 phase estimates is large. However, since the f_1-f_2 and f_2-f_1 phase estimates are highly anti-correlated, the sum of the two phase estimates has a much smaller variance than the individual phase estimates.

b. Mathematical description of FDPP algorithm

Denote the transmitted waveform at frequency f_1 as $E_{TX,f_1}(t)$. Let E_{0,f_1} be the amplitude of the transmitted signal, the phase of the transmitted signal be Ψ_{TX,f_1} and t denote time.

$$E_{TX,f_1}(t) = E_{0,f_1} \cos[2 \pi f_1 t + \Psi_{TX,f_1}]$$ (1)

Denote c be the speed of light, f_{D1} be the Doppler shift and R the range to a point scatterer. Now, the received signal E_{RX,f_1} at time t can be written as

$$E_{RX,f_1}(t) = A_{f_1} E_{0,f_1} \cos[2 \pi (f_1 + f_{D1}) (t + \frac{2R}{c}) + \Psi_{TX,f_1}]$$ (2)

Similarly, the TX and RX signals at frequency f_2 and time $t + \Delta T$ can be written as follows. Note that the range...
to the point-scatterer is now \(R + v_r \Delta T \). Here, \(v_r \) denotes the radial velocity of the point-scatterer.

\[
E_{TX,f_2}(t + \Delta T) = E_{0,f_2}\cos[2\pi f_2(t + \Delta T) + \Phi_{TX,f_2}]
\]

\[
E_{RX,f_2}(t + \Delta T) = A_{f_2}E_{0,f_2}\cos[2\pi(f_2 + f_D)(t + \Delta T) + \Phi_{TX,f_2}]
\]

Assume \(A_{f_1} = A_{f_2} \), \(E_{0,f_1} = E_{0,f_2} \). \(f_1 \gg f_{D1} \) and \(f_2 \gg f_{D2} \). Denote the echo phase \(\phi_{RX} - \phi_{TX} \) for the frequencies \(f_1 \) and \(f_2 \) as \(\Phi_{f_1} \) and \(\Phi_{f_2} \) respectively.

\[
\Phi_{f_1} = 2\pi f_1(t + \frac{R}{c}) + \Phi_{TX,f_1} - 2\pi f_1 t - \Phi_{TX,f_1}
\]

\[
\Phi_{f_1} = 2\pi f_1 \frac{2R}{c}
\]

\[
\Phi_{f_2} = 2\pi f_2[(t + \Delta T) + \frac{2(R + \Delta T)}{c}] - 2\pi f_2(t + \Delta T)
\]

\[
\Phi_{f_2} = 2\pi f_2 \frac{2R + 2v_r \Delta T}{c}
\]

The frequency-diverse pulse pair algorithm is based on the two quantities \(\Delta \Phi_{order1} \) and \(\Delta \Phi_{order2} \). Here, \(\Delta \Phi_{order1} = \Phi_{f_2} - \Phi_{f_1} \) and \(\Delta \Phi_{order2} = \Phi_{f_1} - \Phi_{f_2} \). Denote \(\lambda_1 = c/f_1 \), \(k_1 = \frac{2\pi}{\lambda_1} \), \(\lambda_2 = c/f_2 \) and \(k_2 = \frac{2\pi}{\lambda_2} \).

\[
\Delta \Phi_{order1} = 2R_{order1}(k_1 - k_2) + 2k_1 v_r \Delta T
\]

Similarly,

\[
\Delta \Phi_{order2} = 2R_{order2}(k_2 - k_1) + 2k_2 v_r \Delta T
\]

Recognizing that \(R_{order2} = R_{order1} + v \tau \). Here \(\tau \) denotes the pulse repetition time. Denote \(\Delta \Phi = \Delta \Phi_{order1} + \Delta \Phi_{order2} \).

\[
\Delta \Phi = 2(k_2 - k_1)v_r \tau + 2(k_1 + k_2)v_r \Delta T
\]

\[
\Delta \Phi = 2[(k_2 - k_1)\tau + (k_1 + k_2)\Delta T]v_r
\]

Since all values other than \(v_r \) are solely system dependent, the radial component of target mean radial velocity \(v_r \) can be obtained from the ensemble-averaged \(\Delta \Phi \). Let \(\sigma \) denote the variance and \(\rho \) denote the correlation operators respectively.

\[
\sigma(\Delta \Phi) = \sigma(\Delta \Phi_{order1}) + \sigma(\Delta \Phi_{order2}) + 2\text{Cov}(\Delta \Phi_{order1}, \Delta \Phi_{order2})
\]

Now, the covariance term can be conveniently decomposed as

\[
\text{Cov}(\Delta \Phi_{order1}, \Delta \Phi_{order2}) = \rho(\Delta \Phi_{order1}, \Delta \Phi_{order2}) \cdot \sqrt{\sigma(\Delta \Phi_{order1}) \cdot \sigma(\Delta \Phi_{order2})}
\]

For cases where \(\sigma(\Delta \Phi_{order1}) = \sigma(\Delta \Phi_{order2}) \),

\[
\text{Cov}(\Delta \Phi_{order1}, \Delta \Phi_{order2}) = \rho(\Delta \Phi_{order1}, \Delta \Phi_{order2}) \cdot \sigma(\Delta \Phi_{order1})
\]

From the above relationships,

\[
\sigma(\Delta \Phi) = 2\sigma(\Delta \Phi_{order1}) + 2\rho(\Delta \Phi_{order1}, \Delta \Phi_{order2}) \cdot \sigma(\Delta \Phi_{order1})
\]

Rearranging terms in (12),

\[
\sigma(\Delta \Phi) = 2\sigma(\Delta \Phi_{order1})[1 + \rho(\Delta \Phi_{order1}, \Delta \Phi_{order2})]
\]

The underlying premise of the frequency-diverse pulse pair algorithm is that as \(\rho(\Delta \Phi_{order1}, \Delta \Phi_{order2}) \rightarrow -1 \), the variance of the phase composite estimate \(\sigma(\Delta \Phi) \rightarrow 0 \).

3. Preliminary Results

In this section, Monte-Carlo simulations are qualitatively compared with data-analysis results (all at W-band). Fig. 2 shows simulations of the FDPP Doppler velocity retrieval process. The basic idea is that a composite phase that is solely Doppler dependent is synthesized from noisy...
but highly anti-correlated frequency diverse pulse-pair lag-
1 phase estimates. The phase estimate from the sequence
in which f_1 leads f_2 is shown in Fig. 2a. After 1 PRF,
the sequence of f_2 followed by f_1 is yields phase estimates
shown in Fig. 2b. The sum of the two frequency diverse
pulse-pair estimates is shown in Fig. 2c. Fig. 2d shows
a scaled version of Fig.2c, where the composite phase is
scaled to the Doppler Nyquist interval.

Fig. 3 shows the FDPP algorithm Doppler retrieval
accuracy for a W-band radar as a function of various de-
sign parameters. The simulation methodology employed
herein is similar to that in Venkatesh and Frasier (2013).
Typically, 1000 Monte-Carlo tries were employed to gen-
erate the simulation statistics. The relevant parameters
shown in the corresponding figures. From Fig. 3a, we see
that the improvement in Doppler retrieval error is small
for antenna sizes beyond 5 m. Consequently, we deem a
5m antenna size optimal at W-band. A similar reasoning
decrees a 6.5 kHz and 2 Km along-track integration length
optimal. In Fig. 3c, the increasing errors on the right side
are a direct consequence of decreasing correlation between
the f_1-f_2 and f_1-f_2 pair phase estimates. The increasing
errors on the left hand side are due to sensitivity to ther-
mal noise. As expected, this is exacerbated at shorter lags
and decreasing SNR.

Fig. 4 shows data analysis results from a frequency di-
verse pulse-pair implementation on the NASA GSFC Cloud
Radar System (CRS) (Li et al. (2004)). For the purpose
of this preliminary demonstration, the radar was slowly
slewed across stationary ground clutter targets. Conven-
tional single frequency pulse-pair Doppler estimates were
employed as truth. The good agreement of the FDPP
Doppler estimates with the conventional pulse-pair esti-
mates validates the FDPP concept to first order on hard-
targets.

4. Summary
i. Spaceborne weather radar Doppler measurement is
challenging due to wide Doppler spectra. Essentially,
this exacerbates the Doppler-range dilemma.

ii. An innovative Frequency Diversity Pulse-Pair (FDPP)
technique is proposed and studied for extending the
Doppler Nyquist range, and therefore to enable Doppler
unfolding and Doppler retrieval from fast moving plat-
form.

iii. With modern digital waveform generation, digital re-
ceiver and solid-state power amplifier technologies,
FDPP can be implemented without additional hard-
ware.

iv. Compared to Polarization Diversity, FDPP provides
better channel isolation, therefore better mitigates
contamination from strong targets, such as the ground
or ocean surface.

v. The FDPP algorithm was implemented on the NASA
GSFC Cloud Radar System (CRS) and backscattered
signal from hard-targets were used for preliminary
evaluation. Data collection and analysis efforts on
weather targets from an airborne platform are planned
during an upcoming field campaign in Winter (OLYMP-
PEX).

vi. The FDPP technique is also promising for other ap-
lications such as military aircraft, missile detection
and air traffic control.

REFERENCES

Amayenc, P., J. Testud, and M. Marzoug, 1993: Proposal
for a spaceborne dual-beam rain radar with doppler ca-

Battaglia, A., S. Tanelli, and P. Kollias, 2013: Polarization
diversity for millimeter wave spaceborne doppler radars:
An answer for observing deep convection? J. Atmos.

1555–1572.

Kobayashi, S., H. Kumagai, and H. Kuroiwa, 2001: A pro-
posal of pulse-pair doppler operation on a spaceborne
cloud-profiling radar in the w-band. J. Atmos. Oceanic.
Tech., 19, 1294–1306.

Li, L., G. Heymsfield, P. Racette, L. Tian, and E. Zenker,
2004: A 94 ghz cloud radar system on a nasa high-altitude er-2 aircraft. J. Atmos. Oceanic. Tech., 21,
1378–1388.

Pazmany, A., J. C. Galloway, J. Mead, I. Popstefanija,
R. McIntosh, and H. Bluestein, 1999: Polarization di-
versity pulse-pair technique for millimeter-wave doppler
radar measurements of severe storm measurements. J.

Venkatesh, V. and S. Frasier, 2013: Simulation of spaced
antenna wind retrieval performance on an x-band active
phased array weather radar. J. Atmos. Oceanic. Tech.,
30, 1447–1459.

Wilson, D., A. Illingworth, and T. Blackman, 1997: Differ-
ential doppler velocity: A radar parameter for charac-
terizing hydrometeor size distributions. Journal of Applied
Meteorology, 36, 649–663.
Fig. 3. Monte-Carlo simulations of the FDPP algorithm error space. Clockwise from top left. (a) FDPP Doppler retrieval error as a function of antenna size. (b) FDPP Doppler retrieval error as a function of Pulse Repetition Frequency. (c) FDPP Doppler retrieval accuracy as a function of number of simultaneously transmitted/received FDPP pairs for 1 Km, 2 Km and 5 Km along-track integration lengths. (d) FDPP Doppler retrieval error as a function of time-lag.

Fig. 4. Roof top test using the NASA GSFC W-band radar with a FDPP pulse-pair time-lag of 30 micro-seconds and 5 kHz PRF. Top to Bottom - (a) Backcattering power to receiver noise ratio (signals at zero-range are Tx leakages), (b) Doppler phase estimated using conventional pulse-pair algorithm. (c) Doppler phase estimated using FDPP algorithm. (d) Scatter plot shows that the FDPP algorithm agrees with with conventional pulse-pair results for high SNR targets. (e) The NASA GSFC Cloud Radar System (CRS). Radar parameters follow. Frequency : 94 GHz, Transmitter type : Solid State Power Amplifier (SSPA), Tx power : 30 Watts, Antenna Beamwidth : 0.6 degrees by 0.8 degrees, Pulsedwidth : 2 micro-seconds, PRF : Staggered 4/5 kHz, FDPP time-lag : 30 micro-seconds.