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1. Introduction

Space-borne measurements of Doppler velocity, although
capable of adding valuable insights on latent heating (et al.
(2006)) and microphysics (Wilson et al. (1997)), remain un-
demonstrated. This is because massive spacecraft speeds
along with the use of a non-trivial beamwidth combine
to produce large spectrum widths (Amayenc et al. (1993),
Kobayashi et al. (2001)). By the Wiener-Khinchine theo-
rem, the Doppler spectrum and the auto-correlation func-
tion form a Fourier pair. Consequently, broad Doppler
spectra leads to signal decorrelation so rapid that the there
is little coherence on timescales comparable to PRFs needed
to sample the entire troposphere. Techniques to resolve
the Doppler-Range ambiguity dilemma offer a possible so-
lution. For example, the Polarization Diverse Pulse-Pair
(PDPP) (Pazmany et al. (1999)) transmits a two pulse
train with orthogoal polarizations. The idea is that the
two-pulse train provides adequate sampling of the Doppler
spectrum, while the the PRT can be adjusted indepen-
dently for range coverage. However, finite polarization iso-
lation may overwhelm retrievals close to the surface (Battaglia
et al. (2013)). A possible alternative is the use of frequency
diversity (in lieu of polarization diversity). If proven prac-
tical, this frequency diverse pulse-pair method would po-
tentially provide low-cost Doppler velocity retrievals from
space-borne platforms.

2. Methodology

a. Conceptual description of FDPP algorithm

Two pulses at center frequencies f1 and f2 are trans-
mitted separated by some lag ∆T . While retaining ∆T ,
the order of the pulses is reversed every alternate trans-
mission. From the receive channels at f1 and f2, the pulse-
pair phase estimate of the two sequences are individually
accumulated and stored as ∆φorder1 and ∆φorder2. Finally
Doppler velocity is estimated from the sum of the two in-
dividual pulse-pair phase estimates (denote as ∆φ). Note
that the use of two closely spaced radar frequencies intro-
duces two primary sources of error. First, a “beat” phase
that scales as a function of range is introduced. Nonethe-

Fig. 1. Illustration of the Frequency Diversity Pulse-Pair
(FDPP) concept. Two short pulses - modulated by fre-
quencies f1 and f2 are transmitted during the first pulse
repetition interval. During the next PRI, the pulses are
modulated by frequencies f2 and f1 respectively. There are
two mechanisms for error cancellation. First, the “beat”
phases of the f1-f2 and f2-f1 pairs cancel out in the ex-
pected value sense. Second, since the f1-f2 and f2-f1 phase
estimates are highly anti-correlated, the sum of the two
phase estimates has a much smaller variance than the in-
dividual phase estimates.

less, this term vanishes when the phases of the f1-f2 pair
and f2-f1 pairs are added.Second, since there is little cor-
relation between the f1 and f2 pulses, the variances of the
f1-f2 phase estimates is large. However, since the f1-f2 and
f2-f1 phase estimates are highly anti-correlated, the sum
of the two phase estimates has a much smaller variance.

b. Mathematical description of FDPP algorithm

Denote the transmitted waveform at frequency f1 as
ETX,f1(t). Let E0,f1 be the amplitude of the transmitted
signal, the phase of the transmitted signal be ΨTX,f1 and
t denote time.

ETX,f1(t) = E0,f1cos[2πf1t + ΨTX,f1] (1)

Denote c be the speed of light, fD1 be the Doppler shift
and R the range to a point scatterer. Now, the received
signal ERX,f1 at time t can be written as

ERX,f1(t) = Af1E0,f1cos[2π(f1 + fD1)(t +
2R

c
) + ΨTX,f1]

(2)
Similarly, the TX and RX signals at frequency f2 and

time t+∆T can be written as follows. Note that the range
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to the point-scatterer is now R + vr∆T . Here, vr denotes
the radial velocity of the point-scatterer.

ETX,f2(t + ∆T ) = E0,f2cos[2πf2(t + ∆T ) + ΨTX,f2] (3)

ERX,f2(t + ∆T ) = Af2E0,f2cos[2π(f2 + fD2)(t + 2(R+vr∆T )
c

) + ΨTX,f2]

Assume Af1 = Af2, E0,f1 = E0,f2, f1 ≫ fD1 and
f2 ≫ fD2. Denote the echo phase φRX − φTX for the
frequencies f1 and f2 as Φf1 and Φf2 respectively.

Φf1 = 2πf1(t +
2R

c
) + ΨTX,f1 − 2πf1t − ΨTX,f1 (4)

Φf1 = 2πf1
2R

c
(5)

Φf2 = 2πf2[(t + ∆T ) +
2(R + ∆T )

c
] − 2πf2(t + ∆T ) (6)

Φf2 = 2πf2
2R + 2vr∆T

c
(7)

The frequency-diverse pulse pair algorithm is based on
the two qauntities ∆Φorder1 and ∆Φorder2. Here, ∆Φorder1 =
Φf2 − Φf1 and ∆Φorder2 = Φf1 − Φf2. Denote λ1 = c/f1,
k1 = 2π

λ1

, λ2 = c/f2 and k2 = 2π
λ2

.

∆Φorder1 = 2Rorder1(k1 − k2) + 2k1v∆T (8)

Similarly,

∆Φorder2 = 2Rorder2(k2 − k1) + 2k2v∆T (9)

Recognizing that Rorder2 = Rorder1 + vτ . Here τ de-
notes the pulse repetition time. Denote ∆Φ = ∆Φorder1 +
∆Φorder2.

∆Φ = 2(k2 − k1)vrτ + 2(k1 + k2)vr∆T (10)

∆Φ = 2[(k2 − k1)τ + (k1 + k2)∆T ]vr (11)

Since all values other than vr are solely system depen-
dent, the radial component of target mean radial velocity
vr can be obtained from the ensemble-averaged ∆Φ. Let σ
denote the variance and ρ denote the correlation operators
respectively.

σ(∆Φ) = σ(∆ΦOrder1) + σ(∆ΦOrder2) + 2Cov(∆Φorder1, ∆Φorder2)

Now, the covariance term can be conveniently decomposed
as

(a)

Fig. 2. Monte-Carlo simulations illustrating the FDPP
algorithm concept. Clockwise from top left. (a) Phase
estimates from f1-f2 pulse-pair (∆φorder1). (b) Phase esti-
mates from f2-f1 pulse-pair (∆φorder2). (c) FDPP Doppler
estimates using a scaled version of (d). (d) Sum of Fig. 2a
and 2b., after unwrapping.

Cov(∆ΦOrder1, ∆ΦOrder2) = ρ(∆ΦOrder1, ∆ΦOrder2) ·
√

σ(∆ΦOrder1) · σ(∆ΦOrder2)

For cases where σ(∆ΦOrder1) = σ(∆ΦOrder2),

Cov(∆ΦOrder1, ∆ΦOrder2) = ρ(∆Φorder1, ∆Φorder2) · σ(∆ΦOrder1)

From the above relationships,

σ(∆Φ) = 2σ(∆ΦOrder1)+2ρ(∆ΦOrder1, ∆ΦOrder2)·σ(∆ΦOrder1)
(12)

Rearranging terms in (12),

σ(∆Φ) = 2σ(∆ΦOrder1)[1+ρ(∆ΦOrder1, ∆ΦOrder2)] (13)

The underlying premise of the frequency-diverse pulse-
pair algorithm is that as ρ(∆ΦOrder1, ∆ΦOrder2) → −1,
the variance of the phase composite estimate σ(∆Φ) → 0.

3. Preliminary Results

In this section, Monte-Carlo simulations are qualita-
tively compared with data-analysis results (all at W-band).
Fig. 2 shows simulations of the FDPP Doppler velocity re-
trieval process. The basic idea is that a composite phase
that is solely Doppler dependent is synthesized from noisy
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but highly anti-correlated frequency diverse pulse-pair lag-
1 phase estimates. The phase estimate from the sequence
in which f1 leads f2 is shown in Fig. 2a. After 1 PRT,
the sequence of f2 followed by f1 is yields phase estimates
shown in Fig. 2b. The sum of the two frequency diverse
pulse-pair estimates is shown in Fig. 2c. Fig. 2d shows
a scaled version of Fig.2c, where the composite phase is
scaled to the Doppler Nyquist interval.

Fig. 3 shows the FDPP algorithm Doppler retrieval
accuracy for a W-band radar as a function of various de-
sign parameters. The simulation methodology employed
herein is similar to that in Venkatesh and Frasier (2013).
Typically, 1000 Monte-Carlo tries were employed to gen-
erate the simulation statistics. The relevant parameters
shown in the corresponding figures. From Fig. 3a, we see
that the improvement in Doppler retrieval error is small
for antenna sizes beyond 5 m. Consequently, we deem a
5m antenna size optimal at W-band. A similar reasoning
deems a 6.5 kHz and 2 Km along-track integration length
optimal. In Fig. 3c, the increasing errors on the right side
are a direct consequence of decreasing correlation between
the f1-f2 and f1-f2 pair phase estimates. The increasing
errors on the left hand side are due to sensitivity to ther-
mal noise. As expected, this is exacerbated at shorter lags
and decreasing SNR.

Fig. 4 shows data analysis results from a frequency di-
verse pulse-pair implementation on the NASA GSFC Cloud
Radar System (CRS) (Li et al. (2004)). For the purpose
of this preliminary demonstration, the radar was slowly
slewed across stationary ground clutter targets. Conven-
tional single frequency pulse-pair Doppler estimates were
employed as truth. The good agreement of the FDPP
Doppler estimates with the conventional pulse-pair esti-
mates validates the FDPP concept to first order on hard-
targets.

4. Summary

i. Spaceborne weather radar Doppler measurement is
challenging due to wide Doppler spectra. Essentially,
this exacerbates the Doppler-range dilemma.

ii. An innovative Frequency Diversity Pulse-Pair (FDPP)
technique is proposed and studied for extending the
Doppler Nyquist range, and therefore to enable Doppler
unfolding and Doppler retrieval from fast moving plat-
form.

iii. With modern digital waveform generation, digital re-
ceiver and solid-state power amplifier technologies,
FDPP can be implemented without additional hard-
ware.

iv. Compared to Polarization Diversity, FDPP provides
better channel isolation, therefore better mitigates

contamination from strong targets, such as the ground
or ocean surface.

v. The FDPP algorithm was implemented on the NASA
GSFC Cloud Radar System (CRS) and backscattered
signal from hard-targets were used for preliminary
evaluation. Data collection and analysis efforts on
weather targets from an airborne platform are planned
during an upcoming field campaign in Winter (OLYM-
PEX).

vi. The FDPP technique is also promising for other ap-
plications such as military aircraft, missile detection
and air traffic control.
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Fig. 3. Monte-Carlo simulations of the FDPP algorithm
error space. Clockwise from top left. (a) FDPP Doppler
retrieval error as a function of antenna size. (b) FDPP
Doppler retrieval error as a function of Pulse Repetition
Frequency. (c) FDPP Doppler retrieval accuracy as a
function of number of simultaneously transmitted/received
FDPP pairs for 1 Km, 2 Km and 5 Km along-track inte-
gration lengths. (d) FDPP Doppler retrieval error as a
function of time-lag.

Fig. 4. Roof top test using the NASA GSFC W-band radar
with a FDPP pulse-pair time-lag of 30 micro-seconds and
5 kHz PRF. Top to Bottom - (a) Backcattering power to
receiver noise ratio (signals at zero-range are Tx leakages),
(b) Doppler phase estimated using conventional pulse-pair
algorithm. (c) Doppler phase estimated using FDPP algo-
rithm. (d) Scatter plot shows that the FDPP algorithm
agrees with with conventional pulse-pair results for high
SNR targets. (e) The NASA GSFC Cloud Radar System
(CRS). Radar parameters follow. Frequency : 94 GHz,
Transmitter type : Solid State Power Amplifier (SSPA),
Tx power : 30 Watts, Antenna Beamwidth : 0.6 degrees
by 0.8 degrees, Pulsewidth : 2 micro-seconds, PRF : Stag-
gered 4/5 kHz, FDPP time-lag : 30 micro-seconds.
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