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1. Introduction 

In the past 30 years, many studies have been 
conducted on the development of methods to 
initialize convective-scale NWP models. Now it has 
been well understood that the success of convective 
scale NWP is heavily depending on if we can 
effectively use the remote-sensing observations 
which can resolve internal storm structures. Currently 
there exists a national operational WSR-88D radar 
network which can be used to observe internal storm 
structures. However, these radars can only observe 
radial velocity which is related to three-dimensional 
wind fields and reflectivity which is related to 
hydrometer variables. There is no information about 
water vapor and temperature variables which are 
critical for initializing convective NWP. In order to 
initialize all model variables for the NWP model, 
other type of remote-sensing data should be used, or 
many model variables have to be retrieved from radar 
data. Future GOES-R may provide high-resolution 
data which can resolve internal storm structures, but 
still not all of model variables can be observed. 

Among various advanced data assimilation 
techniques, four-dimensional variational data 
assimilation (4DVar) technique is ideal and can be 
used for the retrieval of the 3D wind and temperature 
from radar data. Such a system was first developed 
by Sun et al. (1991). , known as VDRAS (Variational 
Doppler Radar Analysis System), was later expanded 
to include microphysical retrieval, as well as short-
term forecasts initialized by these retrieved fields 
(Sun and Crook 1997, 1998; Sun 2005; Sun and 
Zhang 2008). In the last two decades, a lot of studies 
about radar data assimilation were conducted using 
another advance data assimilation method - ensemble 
Kalman filter (EnKF) methods (Snyder and Zhang 
2003; Zhang et al. 2004; Tong and Xue 2005; Dowell 
et al. 2004, 2010; Yussouf and Stensrud 2010).  
EnKF uses statistical information derived from 
ensemble forecasts in data assimilation analysis. The 
EnKF can easily retrieve unobserved model variables 
from radar radial wind and reflectivity. However, 
when model error is big, such as in convective scale 
NWP, this statistical information derived from 
ensemble forecasts may be not reliable. So hybrid 

methods which take advantages of both variational 
method and EnKF were proposed and developed 
recently by several institutes in meteorological 
community (Lorenc, 2003; Buehner 2005; Liu et al. 
2008; Wang et al. 2007, 2008, 2013; Zhang et al. 
2013).      

In this study, we develop another type hybrid 
ensemble and variational data assimilation method 
for the WRF-ARW model. The background error 
covariances are derived from ensemble forecasts, so 
it is called 3DEnVar scheme. It is based on the 
3DEnVar scheme developed for the ARPS model 
(Gao and Stensrud 2014). In the method, the 
3DEnVar are performed many times same as the 
number of ensemble size (Fig. 1). The method is 
applied to assimilate simulated radar data for a 
supercell storm produced by WRF model. The results 
obtained by the hybrid method are better than the 
3DVar method in wind field, temperature field and 
other hydrometeor-related variables. 
    In section 2, observing system simulation 
experiments (OSSE) is designed to examine the 
performance of the DA system. The experiment 
results are presented in section 3. The conclusion and 
future work is given in section 4. 

2. Experimental design 

a. Prediction model and truth simulation 
    The hybrid 3DEnVar DA system is tested with 
simulated data from an analytical sounding which is 
from Weisman and Klemp 1982 (“WK82”). A 
slightly modified version of the supercell simulation 
module in the WRF model is used as a forecast 
model to simulate the evolution of the storm. The 
prognostic variables in the modified WRF model 
includes three velocity components u, v, w; 
perturbation potential temperature θ; dry air mass in 
column µ; geopotential height φ; and six classes of 
hydrometeors: water vapor qv, cloud water qc, rain qr, 
cloud ice qi, snow qs, and graupel qg. However, the 
first version of ARPS 3DEnVar (Gao and Stensrud 
2014) does not update the values of dry air mass in 
column and geopotential height. Therefore, a piece of 
code is added to compute these two missing variables 
after the analysis. The microphysical scheme used in 



this study is Purdue Lin scheme based on Lin et al. 
(1983) and Rutledge and Hobbs (1984) with some 
modification following Tao (1989). More details of 
this microphysics scheme can be found in Chen and 
Sun (2002). 
    In our experiments, the physical domain is 82 km 
× 82 km × 20 km. The model involves 82 × 82 × 40 
grid points with 1 km horizontal resolution and about 
0.5 km vertical spacing. The truth simulation is 
started from WK82 sounding. A 3-k ellipsoidal 
thermal bubble centered at 𝑥 = 20, 𝑦 = 40 and 𝑧 =
1.5𝑘𝑚, with radii of 10 km in x and y directions and 
1.5 km in the z direction is added to the background 
to initiate the storm. Open conditions are used at the 
lateral boundary for this idealized case. The length of 
simulation is up to 2 h. 
    During the truth simulation, the initial convective 
cell continually intensifies in the first 35 min. The 
cloud is starting to form at about 10 min. Rain water 
formed at about 15 min, ice phased field appeared at 
15 min as well. The cell is splitting into two around 
45 min. The right-moving cell (which moves to the 
southeast relative) tends to control the system with 
updraft reaching a maximum value 50 m s-1 at 75 min. 
The left-moving cell is also starting to split at this 
point. 

b. Simulation of radar observations 
    The simulated radial velocity Vr is calculated from 

V. = u sin ϕ cos µ + v cosϕ cos µ + w sin µ   (1) 
where µ is the elevation angle and φ is the azimuthal 
angle of radar beams, and u, v, and w are the model-
simulated wind components interpolated to the scalar 
points from the staggered model grid. The random 
errors for radial velocity are drawn from a normal 
distribution with zero mean and a standard deviation 
of 1 m s-1. Since radial velocity is sampled directly 
from model wind field, the effect of hydrometeor 
sedimentation is not taken into account. The 
equivalent reflectivity factor is made up of three 
hydrometeor mixing ratios ⎯ rain, snow, graupel ⎯ 
estimating from the following equations: 

Z; = Z q. + Z q= + Z q>               (2) 
𝑍@A = 10𝑙𝑜𝑔EF𝑍G                          (3) 

For reflectivity, random errors drawn from a normal 
distribution with zero mean and standard deviation of 
3 dBZ are added to the simulated data (Gao and 
Stensrud 2012). 

c.  3DEnVar data assimilation experiments design 
    We start the initial ensemble forecast at 30 min of 
model time when the storm cell is well developed. 
Random noises are added to the initially horizontally 
homogeneous background to generate the ensemble 
members. These noises are sampled from Gaussian 
distributions with zero mean and standard deviations 

of 5 m s-1 for wind components, and 3K for potential 
temperature. A 2D five-point smoother is applied to 
the perturbation fields, similar to the method used by 
Zupanski et al. (2006). The geopotential height, dry 
air mass in column and hydrometeor variables are not 
perturbed at the initial time. The simulated radar data 
are calculated and assimilated every 5 minutes with 
analysis-forecast cycle which begins at 30 min. In our 
3DEnVar experiments, the correlation radius is 4 km 
in horizontal and 2 km in vertical. 
    Two sets of experiments are performed with the 
DA system. The first experiment is performed with 
no weighting for ensemble covariance which means 
that the assimilation is totally a pure 3DVar analysis. 
For the second experiment, the weighting for 
ensemble covariance is set to one that means only the 
ensemble-derived error covariance is used in the 
analysis. This method is similar to the EnKF but the 
minimization of ensemble of 3DVar cost function is 
used to solve the problem instead of EnKF method. 

3. Results of OSSE experiments 

    In this section, we examine the effectivity of 
3DEnVar by comparison of assimilation results with 
the truth simulation. As we discussed before, with 
zero weighting for ensemble covariance, this method 
can be treated as a traditional 3DVar method. While 
in the second experiment with full ensemble 
covariance, 50 ensemble members are used to 
provide the ensemble covariance. The analysis-
forecast cycle procedure is shown as Fig. 1. The 
control member and 50 ensemble members assimilate 
the pseudo radar data at same time. The error 
covariance for control member is derived from these 
50 ensemble members. However, for the 50 ensemble 
members, the error covariance is estimated according 
to the other 49 members except itself. 

 
Fig. 1. The flow chart of 3DEnVar analysis-forecast cycle 

    To evaluate the analyses quantitatively, the root-
mean-square (rms) errors of the analyzed fields are 
computed and compared to the truth. Similar to the 
study by Gao and Stensrud (2014), the rms errors are 
calculated over the domain where the reflectivity is 
larger than 10 dBZ. The rms errors for three com-



 

 
Fig. 2. The rms errors of the analysis and forecast for (a) 
horizontal wind component u (m s-1), (b) horizontal wind 

component v (m s-1), (c) vertical velocity w (m s-1), and (d) 
perturbation potential temperature θ (K) with two different method: 

3DVar (red solid line) and 3DEnVar (blue dashed line). 
ponents of wind field and perturbation potential 
temperature of control member are shown in the 
Figure 2. Results show that the analysis of wind field 
is remarkable better when ensemble covariance is 
used in the analysis. The rms errors of analyzed wind 
components u, v, and w using 3DVar method are 3.28, 
3.10 and 3.39 m s-1 at the of assimilation while rms 
errors for 3DEnVar are 2.15, 1.98 and 2.39 m s-1 
respectively. The spread of forecast and analysis in 
wind field is decreasing as well which means that the 

skill of forecast is significant improved by applying 
3DEnVar method. From Fig. 2d, we can clearly see 
that the 3DVar method barely improve the 
perturbation potential temperature. The comparison 
of these two method in temperature field also 
suggests that the performance of hybrid 3DEnVar 
with full ensemble-derived covariance is much better 
than the pure 3DVar method.  

Figure 3 shows the comparison of the final 
assimilation results after 12 assimilation-forecasting 
cycles between the simulation with 3DVar analysis 
and 3DEnVar analysis with respect to the truth 
simulation. Although the low level wind and 
reflectivity from 3DVar method (Fig. 3e) and 
3DEnVar method (Fig. 3i) are very similar to the 
truth simulation (Fig. 3a), the distributions of 
potential temperature field and the patterns of cold 
pool from 3DEnVar are better than the results using 
3DVar method. The most notable differences appear 
near the location where the reflectivity is larger than 
45 dBZ. While the minimum of potential temperature 
at surface from 3DEnVar is slightly warmer than 
simulated truth, the strength of the cold pool is closer 
to the truth run compared to the 3DVar method. The 
important storm structure is also captured in our 
experiments (Fig. 3 b-d f-h j-l). The analysis at 6 km 
above ground level (AGL) shows that 3DEnVar gives 
a better analysis in wind field, reflectivity patterns 
and potential temperature (Fig. 3j), especially at the 
center of the right-moving cell which is usually very 
strong and has potential to produce severe weather. 
The reflectivity pattern from 3DVar (Fig. 3f) is 
different from the truth (Fig. 3b). However, we can 
easily see that both of the reflectivity and potential 
temperature from 3DEnVar are nearly exactly same 
as the truth. The vertical structure of the storm is 
shown in the Figure 3c-d, 3g-h, 3k-l. The updraft 
core matches very well with the reflectivity 
observation in both analyses. However, we notice 
that there is a significant improvement in wind field 
by 3DEnVar in the domain without radar data.  

4. Summary 

 A hybrid 3DEnVar DA system with WRF model 
interface has been developed based on ARPS 
3DVAR (Gao et al. 1999, 2002, 2004; Hu et al. 2006; 
Gao and Stensrud 2014). In this study, this system is 
applied to assimilate radar data from a simulated 
supercell storm. The impact of ensemble covariance 
is examined in the experiment. The results show that 
the hybrid 3DEnVar method provides flow-
dependent structures for variables which is not 
directly observed by radar and finally improve the 
forecast and analyses results. The 3DEnVar method 
which incorporate ensemble-estimated covariance 
into a three dimensional  variational method is clearly 
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Fig. 3. The reflectivity, wind fields and perturbation potential temperature at the surface and 6 km above ground level, and the vertical section 

along the maximum vertical velocity for truth simulation (a-d), DA with static covariance (e-h) and DA with ensemble covariance (i-l) 



demonstrated to have significant improvement for 
assimilation of radar data for thunderstorm 
forecasting by using WRF model. This technique can 
be effectively used for predicting the track and 
intensity of supercell thunderstorm. 

Future work includes assimilating satellite data 
into this 3DEnVar DA system, such as lightning data, 
and testing the enhancements of satellite data 
assimilation. Ongoing work also includes in-
vestigating the possibility of this 3DEnVar system as 
a real-time analysis system. 
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