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1.   INTRODUCTION 
 
 On the afternoon of 24 May 2011, an outbreak of 
twelve tornadoes, including two EF-4 tornadoes and one 
EF-5 tornado, invaded northern and central Oklahoma 
within the Norman, OK, National Weather Service 
(NWS) Weather Forecast Office’s county warning area. 
This outbreak caused 11 deaths and 293 injuries (see 
http://www.srh.noaa.gov/oun/?n=events-20110524 for 
more information). An extensive observation network 
was in place in this area during the spring of 2011, so 
despite the tragic loss of life, this is an ideal case to 
explore aspects of the Warn-on-Forecast (WoF) concept 
(Stensrud et al., 2009, 2013) with storm-scale numerical 
simulations.  
 The tight clustering of the tornadic and non-tornadic 
supercells on this date made forecasting of storm tracks 
difficult for storm-scale models, but the Center for 
Analysis and Prediction of Storms (CAPS) real-time 
forecasting system had good success at simulating 
these storms. The impact of assimilating CASA X-band 
radar data on the ability of forecasts to simulate the 
storms and their structure, and how this varies with 
different microphysics schemes, has not previously 
been examined for this case. Therefore, this study’s aim 
is to examine the effect of assimilating CASA radar data 
using five different microphysics parameterization 
schemes (Table 1) on the tracks of simulated 
mesocyclones (MC) via the updraft helicity (UH) field as 
compared to each other and reality (i.e., estimated 
tornado point locations) in a potential future WoF 
framework.   
 Instead of using vertical vorticity to identify and 
track MC centers (as in, e.g., Trapp and Weisman, 2003 
and Schenkman et al., 2011), updraft helicity (UH; Kain 
et al., 2008, which used UH from 2 to 5 km AGL) is used 
because UH is the integral of the product of vertical 
vorticity and vertical velocity through a designated 
depth. The UH centers are compared to each other and 
reality via observed tornado point locations. Similar to 
hurricane center errors (e.g., Xue et al., 2013), UH 
center distance and timing errors are computed to 
assess model performance. 
 Recently, the Advanced Regional Prediction 

System’s (ARPS; Xue et al., 2000; Xue et al., 2001; Xue 
et al., 2003) data assimilation system’s (ADAS) complex 
cloud analysis package (Hu et al., 2006a,b) was 
updated for several microphysics schemes, including 
the five in this study (Brewster and Stratman, 2015). 
The goal of this update was to improve analyses of 
hydrometeors using scheme-specific reflectivity 
inversion equations. 
 The numerical simulation methodology for this 
study, including details about the observational data and 
model settings, are described in section 2. The 
verification methodology is described in section 3. 
Results from the first experiment are presented in 
section 4, and preliminary results from the second 
experiment are presented in section 5. Lastly, section 6 
will provide a summary and discussion of the results, 
along with potential future work.  
 

2. SIMULATION METHODOLOGY 
 
 Since this experiment intends to explore the 
capabilities of the forecast system in a realistic qausi-
operational setting, the numerical simulations use data 
from multiple observing platforms. Surface observations 
from NWS and FAA METAR and Oklahoma Mesonet 
stations along with radial wind and reflectivity data from 
the WSR-88D [Dallas/Fort Worth (KFWS), Dodge City 
(KDDC), Frederick (KFDR), Tulsa (KINX), Twin Lakes 
(KTLX), Vance (KVNX), and Wichita (KICT)] and 
Collaborative Adaptive Sensing of the Atmosphere 
(CASA) IP-1 [Chickasha (KSAO), Cyril (KCYR), Lawton 
(KLWE), and Rush Springs (KRSP); see Fig. 1] radar 
networks (McLaughlin et al., 2009) are ingested into the 
initial analyses of the numerical simulations. 
 The 1800 UTC 12-km NAM (North American 
Mesoscale) model’s 3-hour forecast is used as a 
background field in CAPS’ ARPS’s three-dimensional 
variational (3DVAR; Gao et al., 2004) and complex 
cloud analysis process to produce an initial analysis on 
a 323x353-km domain with 1-km horizontal grid spacing 
(Fig. 1) and 53 vertically-stretched levels with a 
minimum vertical grid spacing of 20 m at the bottom. 
Three analysis passes with 20, 50, and 50 iterations and 
horizontal influence radii of 45, 2, and 1 km, 
respectively, are used to produce the 3DVAR analysis 
through the minimization of the cost function. The 
surface in-situ data is implemented in the first and third 
passes, while the radar data is applied in the second 
and third passes. In addition, a 3D mass divergence 
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constraint is utilized to couple the wind components 
together (Hu et al., 2006b).  The cloud analysis uses 
cloud observations from surface and satellite and 
hydrometeor data from radar after the mass field is 
obtained via 3DVAR. 
 An ARPS model simulation is integrated to produce 
forecasts out to 125 minutes. During the first 5 min, an 
incremental analysis update (IAU, Bloom et al., 1996) 
assimilation is performed by introducing the analysis 
increments every 20 s. The increments are applied to all 
fields except for vertical velocity and pressure since 
those two fields are not directly observed in 3D and will 
quickly respond to the other fields to create a balanced 
state. The simulation proceeds on its own for the 
remaining 120 min. 
 

 
Figure 1. Domain of numerical simulations with CASA radar 
locations and 40-km range rings, estimated tornado points, and 
storm IDs. 
 
 During the integration of ARPS, a big and small 
time step of 2.0 s and 0.5 s, respectively, are employed 
in the leapfrog time formulation. In addition, the 1800 
UTC 12-km NAM forecasts are used for the lateral 
boundary conditions. Some other model details include: 
4

th
-order momentum advection in both the horizontal 

and vertical directions, scalar advection using Zalesak’s 
multi-dimensional version of flux-corrected transport 
(Zalesak, 1979), 1.5-order TKE closure based on Sun 
and Chang (1986), 4

th
-order computational mixing, 

Rayleigh damping beginning at 12-km AGL, National 
Aeronautics and Space Administration atmospheric 
radiation transfer parameterization, surface fluxes 
calculated from stability-dependent surface drag 
coefficients using predicted surface temperature and 
volumetric water content, and two-layer force-store soil 
model based on Noilhan and Planton (1989). The 

modeling process is summarized with a flow chart in 
Figure 2. 
  

 
Figure 2. Flow chart of the modeling process used in this 
numerical simulation experiment. 

 
 Research experiments are done using five different 
microphysics parameterization schemes: Lin 3-ice 
microphysics scheme (Lin et al., 1983), Weather 
Research and Forecasting (WRF) single-moment 6-
class microphysics scheme (Hong and Lim, 2006), 
Milbrandt and Yau (MY) single-moment bulk 
microphysics scheme, MY double-moment bulk 
microphysics scheme, and MY triple-moment bulk 
microphysics scheme (Milbrandt and Yau 2005a,b; 
Table 1).  
 

 
Table 1. List of microphysics schemes used in the numerical 
simulations with their associated ID names. 
 
 In addition to microphysics diversity, simulations 
are run using a potential future WoF framework. Eight 
simulations are integrated every 30 minutes starting at 
1900 UTC (IAU begins at 1855 UTC) and ending at 
2230 UTC (Table 2). With this WoF framework, the time 
of tornado genesis (dissipation) for each of the storms of 
interest is captured by four (at least one) simulations. 
The first storm (S1; storms depicted in Fig. 1) developed 
and stayed outside the CASA radar network and 
produced two tornadoes, including the outbreak’s only 
EF-5 tornado. The second and third storms (S2 and S3, 
respectively) developed in the CASA radar network and 
both produced EF-4 tornadoes, which dissipated before 
impacting the Oklahoma City metro area.  
 Two experiments are conducted to examine the 
impact of assimilating CASA radar data with the various 
microphysics schemes on the tracking of the MC 
centers. The first experiment compares assimilating all 
available data (Control) and assimilating all available 
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data except the CASA radar data (NoCASA). This 
experiment is performed using the entire WoF 
framework. The second experiment explores what 
would happen if KTLX would have been unavailable for 
the initiation of the 2130 UTC simulations. In addition to 
the Control and NoCASA runs from the first experiment, 
simulations assimilating all available data except KTLX 
radar data (NoKTLX) and simulations assimilating all 
available data excluding CASA and KTLX radar data 
(Neither) are executed for the simulations initialized at 
2130 UTC. 
 

 
Table 2. Storm ID names and associated tornado and ARPS-
simulation forecast times. Positive (green) and negative (red) 
values indicate the time difference between the start of the 
simulations and first tornadogenesis for each of the storms. 

 

3. VERIFICATION METHODOLOGY 
 
 To assess model performance, simulated MC 
centers via the UH field are compared to each other and 
verified using tornado locations estimated from 
observations. The locations of the six tornadoes 
associated with the three storms of interest are 
estimated every minute based on NWS damage 
surveys, radar data, and high-resolution aerial photos 
from Google Maps. Two adjacent layers of UH (namely, 
1–6 km and 0–1 km) are used for the verification of the 
simulations. These two layers are intended to represent 
simulated mid-level and low-level mesocyclones, 
respectively. As mentioned before, Kain et al. (2008) 
used UH from 2 to 5 km AGL to signify mid-level 
mesocyclones, but for this study, a deeper layer of UH 
is utilized to give more robust UH values by capturing 
more of the simulated mid-level MCs.  
 Since UH is a 2D field and not point data, a simple 
2D object-based technique is utilized to find UH-
weighted centers (analogous to mass-weighted 
centers), which will be compared to the estimated 
tornado points. A search radius of 10 km (i.e., 10 grid 
points) is used to isolate 1–6-km (0–1-km) UH maxima 
that are greater than or equal to 400 m

2
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-2
 (20 m

2
 s

-2
) 

and their surrounding grid point values. A max UH value 
is considered a UH-center candidate if 4 out of 8 (3 out 

of 8) of the adjacent grid point values equals or exceeds 
200 m

2
 s

-2
 (10 m

2
 s

-2
). Once the UH-center candidates 

are determined, the UH-weighted center is computed 
using a radius of 5 km extending from the grid point with 
the max UH value.  
 With the UH-weighted center locations, an objective 
verification technique is used to quantify location and 
timing errors. First, distance errors are computed 
between the estimated tornado point locations and the 
nearest UH center locations at coincident times 
(referred to as “same time”, or ST, for rest of paper). 
Second, distance and timing errors are calculated 
between the estimated tornado point locations and the 
nearest UH center locations at any time during the life of 
the tornadoes of interest (referred to as “any time”, or 
AT, for rest of paper).  
 Differences between averaged distance and timing 
errors are plotted for assessment of the first experiment. 
Negative values for distance error differences indicate 
the Control run performed better than the NoCASA run. 
For differences in timing errors, absolute values of the 
timing errors are used, so once again, negative values 
indicate the Control run performed better. Since the 
second experiment only focuses on the 2130 UTC 
simulations, column charts of the average distance and 
timing errors are used. 
 

4. Control vs. NoCASA  
 

4.1 Storm 1 
 
 Except for the 2230 UTC simulations’ 0–1-km UH 
(0-1UH) centers, the ST and AT average distance error 
differences between the Control and NoCASA runs are 
somewhat evenly spread within 5 km above and below 
the no difference line (Fig. 4a,b,d,e). The differences of 
the absolute values of the timing errors are generally 
less than 10 minutes, so this means there are timing 
error differences up 20 minutes between the Control 
and NoCASA runs (Fig. 4c,f). Also, there is no impact 
on this metric by assimilating CASA radar data for the 
1900 UTC simulations. Interestingly, the Control runs 
tend to perform slightly better for the 0-1UH centers, but 
the opposite is generally true for the 1–6-km UH (1-
6UH) centers. However, the results depict fairly small 
differences between the two types of simulations, so 
even though assimilating CASA radar has some impact 
on the forecasts, the benefits for S1 are not apparent. 
This in not unexpected because S1 was outside of the 
range of the CASA radars. 
 

4.2 Storm 2 
 
 The spread in differences for S2 is larger than for 
S1, but the impact of assimilating CASA radar data is 
more evident with S2 than S1. In general, the Control 
runs have smaller ST and AT average distance errors 
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revealing the positive impact of assimilating CASA radar 
data when simulations are initialized within the CASA 
radar network (Fig. 5a,b,d,e). There is considerable 
variability among the different microphysics schemes 
with respect to differences in average timing errors, but 
overall, the Control runs tend to have smaller timing 
errors (Fig. 5c,f).   
 

4.3 Storm 3 
 
 The simulations all tend to suffer somewhat with 
forecasting S3 by failing to properly evolve and sustain 
the original storm, so fewer UH centers meet the 
threshold requirements used for verification. This leads 
to larger spreads in average distance and timing error 
differences, especially for 0-1UH (Fig. 6). Because of 
difficulties found in forecasting for S3, the results are 
mixed and unreliable. 
 

5. EFFECT of REMOVING KTLX DATA? 
 
 The KTLX radar is fairly close to the storms of 
interest, and Oklahoma has relatively dense WSR-88D 
network coverage. The KTLX data are removed in these 
experiments to assess the impact of gap-filling radar 
data, such as CASA, under conditions with more widely 
spread WSR-88D radars or in the event of downtime in 
a single long-range radar. 
 

5.1 1-6 km UH 
 
 For S1, there are very small differences in the 
average distance and timing errors among the four 
different types of runs, but MYDM and MYTM have 
slightly larger 1-6UH ST and AT average distance errors 
for the NoKTLX and Neither runs (Fig. 7a,b). However, 
the other microphysics schemes have the largest 
distance errors in the Control runs. Even though there 
are some differences in average errors, the small, 
inconsistent differences in errors indicate that the 
forecast of 1-6UH centers, as related to S1, didn’t 
substantially suffer from the exclusion of CASA or KTLX 
radar data (Fig. 7).  
 For S2, the NoCASA runs mostly have larger 1-
6UH ST and AT average distance errors than the 
NoKTLX runs, but this result is not consistent among the 
different microphysics schemes (Fig. 8a,b). However, 
comparing this result to S1’s results indicates that the 
assimilation of CASA radar data may have more of an 
impact on the forecast of 1-6UH centers than the 
assimilation of KTLX radar data when a storm is 
initialized within the CASA radar network. 
 As has been shown already, S3’s average ST and 
AT distance errors for 2130 UTC are unequivocally 
worse than the other two storms, except in some cases 
with LIN3 and WSM6 (Fig. 9a,b). Due to the large 
errors, no meaningful conclusions can be drawn for S3. 

 

 5.2 0-1 km UH 
 
 Generally for S1, the No-KTLX and Neither runs 
have larger average 0-1UH ST and AT distance and 
timing errors than the Control and NoCASA runs (Fig. 
7d,e,f). This indicates that the removal of CASA radar 
data from the assimilation process has a smaller impact 
on the low levels than the removal of KTLX radar data 
likely due to S1 existing outside the CASA radar 
network. Being that the differences between the four 
types of runs for only one initialization time are analyzed 
for this project, no meaningful results are able to be 
made for S2 and S3 (Figs. 8d,e,f and 9d,e,f). 

 
6. SUMMARY AND DISCUSSION 
 
 On 24 May 2011, a tornado outbreak affected parts 
of central Oklahoma. For this study, three storms with 
violent tornadoes from this outbreak are used to 
evaluate the impact of assimilating CASA radar data 
using a microphysically-diverse set of simulations in a 
potential WoF setting. The evaluation of simulated MCs 
using the UH field compared to estimated actual tornado 
locations has proven to be an effective measure of 
model skill. The verification technique applied in the 
evaluation process highlights these model successes 
and failures and helps define expected error bounds 
when utilizing microphysics diversity for the WoF 
ensemble concept (though any operational WoF setup 
will have a much larger ensemble size).   
 Forecasting a complex real-world case yielded 
variations in model skill. The environment certainly was 
well forecasted to support several tornadic storms, but 
getting the details of storm rotation close-to-right is more 
difficult when multiple storms occur within close 
proximity to each other. The impact of assimilating 
CASA X-band radar data proved to be quite variable 
run-to-run and among different microphysics schemes, 
especially for S2 and S3. However, generally the MY 
schemes performed better in these experiments. Not 
surprisingly, the impact of assimilating CASA radar data 
is small for S1 due to the storm being located well to the 
north of the CASA radar network. 
  The low-levels (< 2 km AGL) of storms within the 
CASA radar network initially exhibit stronger horizontal 
and vertical circulations with the inclusion of CASA 
radar data (not shown), but this seemingly-important 
benefit has less impact on forecasts than anticipated. 
However, more real-time case studies like this one 
might need to be conducted before definitive 
conclusions can be drawn. For the second experiment, 
the NoKTLX and Neither runs need to be completed for 
the other seven initialization times. Perhaps these 
additional runs will provide clarity to the results.   
 As previously mentioned, the ADAS complex cloud 
analysis package was updated to be more compliant 
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with a range of cloud and precipitation microphysics 
schemes, and while substantial improvements were 
made in the initial analyses (Brewster and Stratman, 
2015), additional modifications could be made for further 
improvements. No cycling was used in this study, but 
perhaps cycling or the recently-developed IAU with 
variable-dependent timing (Brewster et al., 2015) could 
be employed to potentially improve forecasts, especially 
for S2 and S3.  
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Figure 3. (a) Plot of 1–6-km UH centers from forecasts every 5 min for the 1900-UTC simulations. Small grey triangles represent 
estimated tornado points every 1 min, and small black triangles highlight estimated tornado points used in the ST distance error 
calculations for each set of simulations. Small black-filled circles represent the locations of the CASA radars, and the larger black 
circles indicate the 40-km range of the individual CASA radars. (b) Plot of ST 1–6-km UH centers from the 1900-UTC simulations 
relative to S1’s estimated tornado points. See annotation in plot for additional info. (c) Same as in (b), but for AT 1–6-km UH 
centers. 
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Figure 4. Differences between S1’s Control and NoCASA runs for average ST distance errors (km) for (a) 1–6-km UH centers and 
(d) 0–1-km UH centers, average AT distance errors (km) for (b) 1–6-km UH centers and (e) 0–1-km UH centers, and absolute 
values of average AT time errors (min) for (c) 1–6-km UH centers and (f) 0–1-km UH centers from all simulations. Black vertical 
lines represent the estimated start time of S1’s first tornado. Negative values indicate the Control run performed better 
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Figure 5. Same as in Fig. 4, but for S2.  
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Figure 6. Same as in Fig. 4, but for S3. 
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Figure 7. Column charts depicting S1’s average ST distance errors for (a) 1–6-km UH centers and (d) 0–1-km UH centers, average 
AT distance errors (km) for (b) 1–6-km UH centers and (e) 0–1-km UH centers, and average AT time errors (min) for (c) 1–6-km UH 
centers and (f) 0–1-km UH centers from the 2130-UTC simulations.  
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Figure 8. Same as in Fig. 7, but for S2. 
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Figure 9. Same as in Fig. 7, but for S3. 


