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1. Introduction∗   
 Gao et al. (2013) adapted a real-time three-dimensional 
variational data assimilation (3DVar) system to diagnose 
storm wind fields from multiple Doppler radar observations. 
This 3DVar system can identify storm-scale mid-level 
circulations, but the circulation may not be fully resolved due 
to the isotropic univariant background covariance used for 
each velocity component in the cost-function. To improve the 
mesocyclone wind analyses, a new variational method is 
developed by formulating the background covariance with 
desired vortex-flow dependences in a moving frame following 
the mesocyclone on each selected tilt of radar scan (Xu et al. 
2015). The method can be extended to analyze three-
dimensional vortex winds from either single-Doppler or 
multi-Doppler scans of mesocyclones with the background 
wind error correction functions formulated in a slantwise 
cylindrical coordinate system co-centered with the 
mesocyclone at each vertical level. For this extension, the first 
task is to estimate the vortex center location of the detected 
mesocyclone as a continuous function of height and time in 
the four-dimensional space. To accomplish this task, a multi-
step method is developed. The method is applied to the 
tornadic mesocyclone observed by operational radars in 
Oklahoma on 20 May 2013. The detailed steps of the method 
and their performances with the above tornadic mesocyclone 
case are reported in this paper. 
 
2. Multi-step method  
 The method consists of the following three steps: First, the 
mesocyclone area is identified as a by-product of the 
mesocyclone-targeted radar velocity dealiasing and the 
mesocyclone vortex center location is also estimated as a by-
product to provide an initial guess of the vortex center 
location on each tilt of radar scan. Then, a two-step algorithm 
is applied to the dealiased radial-velocity field in the 
mesocyclone area to further estimate the vortex center 
location on each tilt. Finally, the mesocyclone vortex center 
location is estimated as a continuous function of height and 
time by fitting a smooth-function form constructed by B-
spline basis functions to the vortex center locations estimated 
in the second step. The estimated function is denoted by xc(z, 
t) where xc ≡ (xc, yc). The detailed techniques used in the 
above steps are described in the following sections.  
 
3. Mesocyclone-targeted velocity dealiasing in step-1  
 In this first step, the mesocyclone area is identified as a by-
product of the mesocyclone-targeted velocity dealiasing with 
the vortex center location estimated as the first guess on each 
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tilt. The mesocyclone-targeted velocity dealiasing contains an 
additional step beyond those reported in Xu et al. (2013). In 
this additional step, the alias-robust least-squares method with 
a two-parameter vortex model for correcting aliased radial-
velocity data around a hurricane (Xu et al. 2014) is extended 
into an alias-robust variational method with a 6-parameter 
vortex model for correcting aliased radial-velocity data 
around a mesocyclone.  
 In the above extension, the radial velocity is expressed by  
 
  vri = vr(ri, φi, θi |VM, RM, rc, φc, Ve, ß)  
  ≡ Vecos(φi - ß) + VTisin(αi - φi)cosθi. (1) 
 
Here, ri, φi and θi denote the radial distance, azimuthal and 
elevation angles of the ith observation point, respectively, in 
the radar coordinates. VM is the maximum tangential velocity 
of the modeled vortex, and RM is the radius of VM from the 
vortex center. rc and φc denote the radial distance and 
azimuthal angle of the vortex center, respectively, in the radar 
coordinates. Ve and ß denote the environmental wind speed 
and direction angle (with respect to the northward y-
coordinate). The radial profile of vortex tangential velocity is 
described by the following parametric vortex model (Vatistas 
et al. 1991): 
 
  VT(R) = VM(R/RM)[1/2 + (R/RM)4/2]-1/2, 
 
where R is the radius distance to the vortex center. Thus, VTi 
= VT(Ri) is the modeled vortex tangential velocity at R = Ri, 
where Ri is the radius distance of the ith observation point 
from the vortex center and is computed as a function of (ri, 
φi, rc, φc) by (4b) of Xu et al. (2014). αi is the azimuthal 
angle of the ith observation point viewed from the vortex 
center and is computed as a function of (ri, φi, rc, φc) by (4c) 
of Xu et al. (2014).  
 The expression of vri in (1) is used to fit aliased radial 
velocity observations vr

o(ri, φi, θi) directly. The fitting 
minimizes the following cost-function:  
 
  J = ∑i{Z[vri - vr

o
i, vN]}2, (2) 

 
where ∑i denotes the summation over i, Z[( ), vN] ≡ ( ) - 
2vNN[( ), vN] is the aliasing operator, vN is the Nyquist 
velocity, N[( ), vN] ≡ Int[( )/(2vN)] is the Nyquist number of ( 
), Int[( )] represents the nearest integer of ( ). The cost-
function in (1) is formulated based on the unconventional 
approach (Xu et al. 2009, Xu 2009) and thus is smooth and 
concave upwards in the vicinity of the global minimum. The 
global minimum is difficult to found by the conjugate-
gradient descent algorithm in the space of (VM, RM, rc, φc, Ve, 
ß) unless the initial guess is sufficiently close to the global 
minimum. To overcome this difficulty, a brut-force search is 



 

used in the subspace of (VM, RM) by selecting 5×5 guesses of 
(VM, RM) around the initial guess of (VM, RM). The conjugate-
gradient descent algorithm is then used to search the 
conditional global minimum in the subspace of (rc, φc, Ve, ß) 
with (VM, RM) fixed to each of the 5×5 guesses. The smallest 
of the 5×5 conditional minima in (rc, φc, Ve, ß) gives a close 
estimate of the global minimum in (VM, RM, rc, φc, Ve, ß).  
 The above additional step of dealiasing (beyond those 
reported in, the mesocyclone-targeted velocity dealiasing is 
more effective than the previous technique (Xu et al. 2013) 
in detecting and correcting the aliased radial-velocity data 
within each mesocyclone. The improvement is exemplified 
by the comparison in Fig. 1.  
 
 

 
 

 
 
 
 
 

 
 
Fig. 1. (a) Image of raw radial velocity (superimposed on the 
Moore city street map plotted by bright green lines) scanned 
from KTLX radar on 0.5o tilt at 20:13:01 UTC on 20 May 
2013 for the Moore, Oklahoma tornadic storm. (b) Image of 
dealiased radial velocity produced by the previous method 
(Xu et al. 2013). (c) Image of dealiased radial velocity 
produced by the mesocyclone-targeted velocity dealiasing 
with the above explained additional step to detect and 
correct severely aliased radial-velocity data around each 
tornadic mesocyclone. The white letters “A” in (a) mark the 
aliased-velocity areas. The yellow circle in (b) and (c) 
encircles the mesocyclone and its produced EF5 tornado. 
The black pixels within the yellow circle in (b) show the 
flagged (missed) data in the vortex center area.  
 
4. Estimating vortex center location on each tilt in step-2 
 The vortex center location (rc, φc) estimated in the radar 
coordinates as a by-product of the mesocyclone-targeted 
velocity dealiasing in the previous section is used here as the 
first guess. From this first guess, the vortex center location is 
re-estimated by applying the following two-step algorithm to 
the dealiased radial-velocity field in the mesocyclone area on 
each tilt: 
I. The initial estimate of vortex center is the point (rc

0, ϕc
0) at 

which the azimuthal shear of vrº is largest within the sector of 
20 km arc length and 20 km radial range centered at the first 
guess point in the mesocyclone area.  
II. The final estimate of the vortex center location is given by  
  
 (rc, ϕc) = ∑j(rj, ϕj)wj /∑wj,    
  
where wj = (∆vrj/∆lj)2 is the weight,  (∆lj)2 = (rj - rc

0)2 + rj
2(ϕj - 

ϕc
0)2, and ∑j denotes the summation over j for up to five range 

circles that have the first five largest values of ∆vrj.  
 The above two-step algorithm is applied to 10 consecutive 
volumes of radial-velocity data scanned by operational KTLX 
from 1951 to 2035 UTC for the Oklahoma Moore tornadic 
mesocyclone on 20 May 2013. The estimated values of (rc, 
ϕc) in the radar coordinates are converted to the values of (xc, 
yc) in the Cartesian coordinates with the origin (x, y) = (0, 0) 



 

at the vortex center estimated on the first (lowest) tilt in the 
first volume of the aforementioned 10 consecutive volume 
scans. These 10 consecutive volume scans is covered by the 
time period of 0 ≤ t ≤ T = 55 min while t = 0 corresponds to 
1941 UTC, that is, 10 minutes before the starting time (1951 
UTC) of the first volume scan. The estimated values of xc (or 
yc) are shown by the numbers (in km) at discrete points of (z, 
t) in Fig. 2a (or Fig. 2b), where each discrete point of (z, t) 
corresponds to the height and time at which the vortex center 
is estimated (on each tilt in each volume).   
 

 
Fig. 2. (a) Values of xc estimated by the two-step algorithm 
shown by the numbers (in km) at discrete points of (z, t), and 
the continuous function xc(z, t) estimated by the fitting in 
section 5 shown by the colored counters. (b) As in (a) but for 
values of yc at discrete points of (z, t) and the continuous 
function yc(z, t) estimated by the fitting in section 5. 
 
5. Estimating xc(z, t) in step-3 
 The vortex center location xc = (xc, yc) is estimated as a 
continuous function of (z, t) by fitting xc(z, t) constructed by 
B-spline basis functions to the vortex center locations 
estimated in the previous section. In particular, the fitting 
minimizes the following cost functions: 
 
 J(aknß) = ∑i[xc(zi, ti | aknß) - xci]2, 
  J(bknß) = ∑i[yc(zi, ti | bknß) - yci]2, 
 
where ∑j denotes the summation over i, xc(zi, ti | aknß) = 
∑knßaknßBk(zj)Bn

ß(tj), yc(zi, ti | bknß) = ∑knßbknßBk(zj)Bn
ß(tj), ∑knß 

denotes the summation over k, n and ß, Bk(z) denotes the 
linear basis function at the kth node point in z, Bn

ß(t) denotes 
the quadratic basis function of ßth order (with ß = 0, 1) at the 
nth node point in t, and xci = (xci, yci) denotes the ith vortex 
center location estimated at (zi, ti) by the two-step algorithm 
in the previous section. The quadratic basis function Bn

ß(t) 
with the nth node point at t = 0 is shown by the red (or green) 
curve for ß = 0 (or ß = 1) in Fig. 3.  

 
Fig. 3. Quadratic basis function Bn

ß(t) for the nth node point at 
t = 0 plotted by the red (or green) curve for ß = 0 (or ß = 1). 
The time t is scaled by T = 55 min. 
 
 The above fitting is applied to all the xci = (xci, yci) 
estimated in the previous section for the 10 consecutive 
volumes of radial-velocity data scanned by operational KTLX 
for the Oklahoma Moore tornadic mesocyclone on 20 May 
2013. The vertical domain of 0 ≤ z ≤ 5 km is covered by a 
single element with the linear basis function, and the time 
domain of 0 ≤ t ≤ 55 min is covered by a single element with 
the quadratic basis function. The estimated continuous 
function xc(z, t) [or yc(z, t)] is shown by the colored counters 
in Fig. 2a (or Fig. 2b). The trajectory of the estimated xc(0, t) 
at the surface level (z = 0) is plotted by the dashed green 
curve in Fig. 4, where the nine colored line segments show 
how the estimated xc(z, t) varies with z (from 0 to 5 km) at 
nine different times. As shown, the estimated vortex center 
location is slanted away from the vertical z-direction at each 
fixed time, and the slanted vortex core became more vertical 
as the vortex intensified and moved toward and into city 
Moore in the later time (around t = 45 min or 2025 UTC).  
 

 
Fig. 4. Trajectory of the estimated xci(0, t) = [xc(0, t), yc(0, t)] 
at the surface level (z = 0) plotted by the dashed green curve. 
The colored line segments started from nine different points 
(for nine different times) along the green trajectory show how 
the estimated xc(z, t) vary with z (from 0 to 5 km) at the nine 
different times. 
 
 Using the estimated xc(z, t), the background error 
covariance functions can be formulated with desired vortex-
flow-dependences in the three-dimensional space for any 
given time (within the time window of 0 ≤ t ≤ 55 min), so the 
two-dimensional vortex wind analysis of Xu et al. (2015) can 
be extended to a three-dimensional vortex wind analysis in a 
slantwise cylindrical coordinate system co-centered with the 



 

the estimated xc(z, t) at a given t. As an example, the analyzed 
axi-symmetric part of the three-dimensional vortex in the 
slantwise cylindrical coordinates (z’, r) at t = 15 min (or 45 
min) is shown in Fig. 5a (or 5b). 
 

 

 
Fig. 5. (a) Vertical cross-section for the axi-symmetric part of 
the three-dimensional vortex in the slantwise cylindrical 
coordinates (z’, r) at t = 15 min, where the color scale is for 
the tangential velocity, and the black arrows (or contours) plot 
the velocity (or stream function) of the vertical circulation. (b) 
as in (a) but for the vertical cross-section at t = 45 min. 
 
6. Conclusions 
 A multi-step method is developed to estimate the vortex 
center location of radar observed mesocyclone in the four-
dimensional space. The estimated vortex center location is a 
continuous function of height and time, denoted by xc(z, t) 
where xc ≡ (xc, yc). This estimated function xc(z, t) provides 
the first necessary and critical information for extending the 
two-dimensional vortex wind analysis of Xu et al. (2015) to 
a three-dimensional vortex wind analysis in a slantwise 
cylindrical coordinate system co-centered with the estimated 
xc(z, t) at a given t. The multi-step method is successfully 
applied to the tornadic mesocyclone observed by operational 
radars in Oklahoma on 20 May 2013.  
 The estimated xc(0, t) at the surface level (z = 0) can be 
used in an additional step to timing the tornado damage 
survey data, so the possible cycloid movement of vortex 
center can be detected and estimated at the surface level from 
the tornado damage survey data. The research progress and 
preliminary results obtained in this direction can be found 
from the recorded oral presentation of 14A2 posted at the 
AMS conference web site. The cycloid pattern revealed by the 

tornado damage survey data seems to suggest that the tornado 
vortex could be a satellite vortex moving circularly within the 
mesocyclone and around the center of the mesocyclone. The 
cycloid pattern revealed by the tornado damage survey data 
could be also partially caused by rear-flank downdraft surges 
according to Kurdzo et al. (2015). Clarifying these possible 
features and resolving the detailed three-dimensional vortex 
flows require continued research and development in vortex 
wind analyses with rapid-scan radar observations. 
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