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1. Introduction

Drop size distribution data from two collocated

disdrometers (Meteorological Particle
Spectrometer and 2D-video disdrometer) from
recent measurement campaigns (Thurai et al.,
2017), in Greeley, CO, and Huntsville, AL, have
revealed that the full DSD spectra (at hourly and
5-min averages) can be represented by a
combination of (i) a drizzle mode for drop
diameters less than around 0.7 mm and (ii) a
precipitation mode starting around 0.7-1 mm
region, i.e. the ‘shoulder’ region, and extending
to larger sizes. The two modes tended to be more
prominent (at the hourly averaging) for the
Huntsville cases relative to the Colorado events
reflecting the climatological differences between

the two locations.

Our new results point to the potential need for
additional work on modeling the full DSD
this  paper, the

formulation given in Lee et al. (2004), in

spectra. In we consider
particular the scaling form of the generalized
gamma DSD with the 4 parameters namely:
generalized characteristic number density, N,
the generalized characteristic diameter, D, and

two ‘shape’ parameters c and L.

N(D) = Ng hga(ijuc) (DLmI)

where  N,'= Mj(j“)/(j -) Mj(iﬂ)/(i )

and

Such formulation has been tested using our
measurements of the full DSD spectra. Initial
results are promising. 3 minute sample DSD
measurements from both locations show good fit
to the data at both the small and large drop ends,
The standard
gamma model (which is a special form of

simultaneously. 3-parameter
generalized gamma formulation) was unable to
provide such good fits at both the small and 1arge
drop ends.

We present here illustrative case examples, both
from Greeley and from Huntsville and compare
in both

locations in terms of the variability of the 4

the characteristics of these events
generalized gamma DSD parameters. Events
range from light precipitation to convective

storms.

2. Model Testing

Testing of the generalized gamma model was
done following the same equation (43), as in Lee

etal. (2004), as given below in eq. (1):
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Setting i = 3 and j = 4, a global fitting of c and p
was performed by minimizing the squared
difference on log scale. The measured DSD

spectra (over 3 minutes) which are used as input

)
D’

to the fitting procedure were constructed by
utilizing the corresponding MPS-based N(D)
measurements for 0.15 < D, < 1 mm and the
2DVD-based DSD measurements for D, >1 mm.

2.1 Firstset of examples: selected periods from the 17 April 2015 event at Greeley, Colorado
1-min R (av 3 min) from Pluvio
20 T T T T T T T

.~ Taken from Thurai etal., 2017 (b) ]
- /-f\‘\ -
15— —
E - i
£ -
« i ]
5| F E n

Period (a) corresponds to ‘light precip’ event and
period (b) corresponds to convective storm at the
disdrometer site. (Thurai et al., 2017). Results
are shown below. Note, the measured DSDs both
from the MPS (in black) and the 2DVD (in blue)

are shown for the entire D, range. The fitted

curve is represented by the red dotted lines, and
the fitted parameters of f/and ¢ are shown in each

panel, together with log,((Ny") and D ,” values.
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2.2 Second set of examples: selected periods from the 10 Aug 2015 convective event at Greeley
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2.3

Third set of examples: around the GPM overpass time (2331 UTC) on 11 Apr 2016, Huntsville
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2.4 Fourth set of examples: from an event on 30 Nov 2016, UA Huntsville (MPS was outside DFIR)
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3 Variation of the fitted parameters with R

A summary of the fitted parameters for arbitrarily
selected time periods during several events, both
from Greeley and from Huntsville, are shown as
a function of the (3-minute) rain rates in the
figure below. Each color represents the different
time periods or events. The top left shows the
variation of D,’, top right the variation of

log,,(N,’), the bottom left for 4 and the bottom
right for the value of c.

From these plots, it appears that:

() D,’ tends to increase with rain rate
(expected)

(b)  Some tendency for log,,(N,’) to decrease
with R

(©)

(d)

(e)

Values of i tend to be close to 0 or
slightly negative (high concentration of
small drops). Their range is narrow.

¢ does not seem to be correlated with R
but as given in the next section, it can
have larger range of uncertainties
associated with it.

For a given R, the Huntsville events
lower

appear to have higher D

log,,(N,’), p values which are closer to
zero or slightly positive, and somewhat
lower ¢ values. The lower ¢ values and
the high D, indicate wider distributions
towards larger drops, although when L is
slightly negative, the effect of ¢ is much
less.

Family of curves showing the effects of

varying ¢ and varying mu are shown in the

Appendix.
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4  Error residuals

Two examples of the residual errors in ¢ - £ space
are shown as color-filled plots on the top panels
of the figure below. The events correspond to (i)
UAH, 11 April 2016, during the GPM overpass
at around 23:31 UTC, and (ii) Greeley, 10 Aug
2015, during a convective rain event at 23:57
UTC. Both cases were shown earlier in section 2,
and in both cases, the same 3-min DSDs were
used for the fitting.

Darker areas in the error residual plots represent
lower errors, and the “red +” points represent
the lowest error. And highlighted in cyan color
are the areas where the errors were less than 10%
of the minimum error. While the cyan areas span

only a very limited range in u values, in terms of
c values, they extend to larger ranges. In the
UAH event case, ¢ ranges from 2 to 4; for the
Greeley case, the range is even larger, extending
from 2 to 6.

The fitted curves with the corresponding 10%
error tolerance are shown in the two bottom
panels (red — minimum error; cyan — to within
10% of minimum error). For the UAH case
(stratiform rain), the ‘flare’ occurs at both the
small drop end and the large drop end. By
contrast, for the Greeley case (convective rain),
the flare occurs only at the large drop end
(sampling issues may play a role here). For the
medium-sized drops, the effect is hardly
noticeable, for both events.
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5 Conclusions

Testing of eq. (1) against our datasets of the
composite MPS-2DVD DSDs has highlighted the
suitability of this formulation to represent the full
spectra. Analysis of error residuals has indicated
that although minim error can be reached in the

¢ - M domain, if one allows 10% error tolerance

then ¢ can vary over a significant range. £ on the
other hand appears to be a more sensitive

parameter, and lies within a narrow range
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Appendix: Effects of varying c and i on the DSDs

The left panels below show the effect of 1 on
DSDs when c is fixed 1, 2, and 3. The right
panels show the effect of ¢ when p is fixed at -
0.1, 0 and 1. In all cases, N, was set to 10’
/mm/m’, and D, to 1.5 mm.

In general, when c is fixed, the effect of W is to
adjust the width at the DSD spectra at both ends;

N(D) [/mm/rm3]

N(D} [/mm/rm~3]

my = =1

mu = 3
mu = 4
mu= 5

N(D) [/mm/mr3]

2 3
D {(mm)

N(D} [/mm/mr3] N(D) [/mm/rm3]

N(D) [/mm/rm3]

specifically, lower p values will extend the
spectra at both ends. On the other hand, the
effect of ¢ will depend on the value of ¢. When u
is -0.5, ¢ has less effect (no trend is visible)
compared with when f£is 1. When g is close to
0, ¢ shows more effect at the large drop end;
lower values of ¢ extend the spectra to higher
concentrations of larger drops (in relative terms).

2 3
D (mm)

10



