TOSHIBA

Leading Innovation >>>

INTRODUCTION

In recent years, a solid-state weather radar (SSWR) has become mainstream. The many advantages of SSWRs compared with klystron or magnetron radar include high-accuracy, small size, easy maintenance, low lifecycle cost and low spurious emission.

Pulse compression is a key technology for SSWR from the viewpoint of securing the desired transmission energy, range resolution, and range sidelobe level. For a basic performance enhancement of SSWR, we consider application of nonlinear frequency modulation (NLFM) in pulse compression, replacing the conventional linear frequency modulation (LFM).

Our work on the developed NLFM is described below.

PULSE COMPRESSION TECHNIQUE

Comparison of the Main Characteristics between LFM and NLFM

- LFM : A range sidelobe can be suppressed to a low level by applying a lossy window function. However, SNR is sacrificed for the loss of a window function
- NLFM: SNR can be improved, because a lossy window function is not required. However, it is more difficult to suppress a range sidelobe compared with LFM.
- \Rightarrow Suppression of a range sidelobe is an important issue to be resolved in NLFM.

Figure 1. Linear Frequency Modulation Figure 2. Non-Linear Frequency Modulation

 $2\pi dt \uparrow_{\mathbf{P}/2}$

PULSE COMPRESSION WEATHER RADAR WITH IMPROVED SENSITIVITY, **RANGE RESOLUTION, AND RANGE SIDELOBE**

Koichiro Gomi¹, Koh Hashimoto¹, Tomomi Aoki¹, Keiichi Yamaguchi¹, Takashi Murano¹, Akiko Yamada¹, Naoki Anraku¹, Masakazu Wada¹, Ahoro Adachi² ¹ Toshiba Corporation, Kawasaki, Japan ² Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Japan

RESULTS OF LOOPBACK TEST

Our Approaches for Suppression of Range Sidelobe in NLFM

- High-precision corrections for the distortion properties in the transmitter.
- Optimization of signal waveform by use of genetic algorithm.
- Application of our unique amplitude taper model.
- Including the characteristic of a digital filter in the optimization cycle.
- \Rightarrow We suppressed a range sidelobe in NLFM to a lower level than that in current LFM, not only in the ideal simulation, but also in the real implementation.

Table 1. Waveform Parameters

Parameter	LFM (current)	NLFM (developed)	
Frequency Bandwidth (B)	1.63 MHz	\leftarrow	
Chirp Type	Down Chirp	\leftarrow	
Pulse Length (T)	36µs, 72µs, 108µs	\leftarrow	
Amplitude Taper $(a(t))$	Tukey Window (r=0.16)	Unique Waveform (r=0.16)	
Window Function $(w(t))$	Blackman-Harris Window	Same as Amplitude Taper	
Digital Filter	Included (Bandwidth =1.4MHz)	\leftarrow	
Sampling Frequency	2MHz(Ref)、 80MHz(Drive)	\leftarrow	
Center Frequency	0MHz(Ref)、 20MHz(Drive)	\leftarrow	

Figure 5. C-Band SSWR System

Table 2. Summary of Loopback Test Results

		$ LFM T = 36\mu s $	NLFM $T = 36\mu s$	$ LFM T = 72\mu s $	$\begin{array}{l} NLFM \\ T = 72\mu s \end{array}$	$ LFM T = 108\mu s $	$\begin{array}{l} NLFM \\ T = 108 \mu s \end{array}$
Peak Range Sidelobe L	evel (dB)	-43.5	-56.3	-61.1	-65.7	-70.4	-72.5
Range Resolution 3dB	(m)	180	148	179	145	178	149
Mainlobe Width	(m)	1,050	1,050	1,200	1,200	1,200	900
Peak Power Level	(dBm)	+1.73 (=P ₁)	P ₁ + 2.52	+4.62 (=P ₂)	P ₂ + 2.52	+6.29 (=P ₃)	P ₃ + 2.55

RESULTS OF WEATHER OBSERVATION

<u>Comparison of Weather Observation Results</u>

- More than 2.5 dB improvement of SNR is confirmed in developed NLFM compared with current LFM using the Blackman-Harris window function.
- \Rightarrow We confirmed SNR improvement not only for the point target but also for the distributed weather target.

We developed a pulse compression weather radar with improved sensitivity, range resolution, and range sidelobe by use of proposed NLFM.

- More than 2.5 dB improvement of SNR is confirmed from the results of the loopback test and the actual weather observation.
- Range resolution is approximately 1.2 times lower because of the optimization of NLFM signal by use of genetic algorithm.
- Peak range sidelobe level is about 2.1 dB to 12.8 dB lower as a result of our abovementioned approaches. Peak range sidelobe level is suppressed to a very low level. (-65.7 dB @ T=72 us, -72.5 dB @ T=108 us)

The authors are grateful to the Advanced Radar Research Center of the University of Oklahoma for support of the adaptive waveform optimization framework of NLFM.

- Weather observation results of LFM and NLFM are compared in terms of an area integral calculus level of the reception strength.

CONCLUSION AND FUTURE WORK

Compared with current LFM using the Blackman-Harris window function,

We are conducting further evaluation of the developed NLFM in weather observations and plan to make practical use of NLFM in SSWR within the next few years.

ACKOWLEDGEMENT