

1. Introduction

➤ Current calibration methods:

A©TRiS

MATRICE 600	Specifications	
Туре	Micro-drone hexacopter	
Dimension	Diameter 167 cm, height 62 cm	
Weight	9.1 kg with batteries	
Payload	Max 6 kg	
Flight mode	Automatic with waypoint or based on radio control	
Hovering Accuracy	Vertical: ±0.5 m, Horizontal: ±1.5 m	
Max Speed	18 m/s (No wind)	
Endurance	No payload: 35 min, 6 kg payload: 16 min	

UAV-based absolute radar calibration

Jiapeng Yin, Fred van der Zwan, Erik Oudejans, Christine Unal, Herman Russchenberg

Department of Geoscience and Remote Sensing, Delft University of Technology, the Netherlands

> Shortcomings :	> Proposed me
1) Location bound	1) A UAV s
2) Costly for tower setup or helium balloon purchase	2) Flying ov
3) Non-repeatable for mobile radar	3) Real-time
1) Impossible for vortically pointing cloud radar	solution

ethod

serves as the aerial platform carrying a metal sphere ver radar illumination areas to complete the calibration process

5. Alignment calibration

