
1. Introduction

3. Equipment and calibration setup

 A novel radar calibration technique which uses an industrial-grade

UAV to carry a metal sphere is proposed.

 Receive power from metal sphere is calculated in the range-

Doppler domain, which separates from UAV, GPS device and

ground clutter.

 After the completion of alignment calibration, sphere can be

designed to position in the antenna main beam to complete the

calibration progress.

 In the future, radar constant in different position C(θ, ϕ) can be

obtained.
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UAV-based absolute radar calibration 

Proposed method 

1) A UAV serves as the aerial platform carrying a metal sphere

2) Flying over radar illumination areas to complete the calibration process

3) Real-time single-frequency precise point positioning (PPP) type GNSS 

solution to retrieve the sphere position

2. Basic principle

Current calibration methods:

1) Metal sphere hanging underneath a tethered balloon 

2) Trihedral corner reflector locating on the top of a tower or mast

 Shortcomings :

1) Location bound

2) Costly for tower setup or helium balloon purchase

3) Non-repeatable for mobile radar

4) Impossible for vertically-pointing cloud radar

 UAV

MATRICE 600 Specifications

Type Micro-drone hexacopter

Dimension Diameter 167 cm, height 62 cm 

Weight 9.1 kg with batteries

Payload Max 6 kg

Flight mode Automatic with waypoint or based on radio control 

Hovering Accuracy Vertical: ±0.5 m, Horizontal: ±1.5 m

Max Speed 18 m/s (No wind) 

Endurance No payload: 35 min, 6 kg payload: 16 min

4. Measurements

 Time domain  Frequency domain

 Azimuth-elevation output
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 Metal sphere deviated from boresight (θ, ϕ)
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 Radar constant
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 Radar constant deviated from boresight (θ, ϕ)
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 The theoretical antenna beam pattern is given and sphere is moving

around to cross the antenna beam.

 A Gaussian-shape result is present from Position 1 via Position 2 to

Position 3, and at Position 2 it reaches the maximum.

 Azimuth difference of Position 1 and Position 2 is 0.05⁰, and

elevation difference is 2.42⁰ which is exactly first null beam width.

 Hence, the elevation angle of Position 2 presents the elevation

boresight, which means the elevation angle deviation is 0.98⁰.

 Schematic diagram of calibration campaign
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5. Alignment calibration

 The routes of UAV, sphere and GPS box are visible in the time domain.

 These objects are observed in the frequency domain to further distinguish from each other.

 A power window in the frequency domain is used to calculate the sphere receiving power.

 Only data that sphere is not severely contaminated by ground clutter are selected.

 The GPS in the UAV and external GPS box are used to

locate the position of metal sphere.

 The sphere is located between the UAV and GPS box using

light connecting line with the same length.
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