A newly calibrated long-term radar dataset of tropical convection

¹Monash University, Melbourne (Australia)

²Australian Bureau of Meteorology

1. Introduction

AMS

The C-band POLarimetric (CPOL) radar stationed near Darwin (11°S, 131°E) Australia from 1998 to 2017 is a great tool for studies of **tropical convection**. CPOL is a research **dual-polarization Doppler** radar that has collected **18 wet seasons** (November to May) of observations since 1998, producing more than 350,000 PPIs.

The objective of this work is to produce a new quality-controlled dataset using latest develop-

4. Step 3 - Self-consistency check.

The self-consistency technique has been also used. Disdrometer measurements and for selected stable calibration periods. Pros: Absolute calibration of both Z_h and Z_{dr} . Cons: T-matrix calculations (small changes have an important impact, DSD, canting angle, ...), some cases of ambiguity between Z_H and Z_{dr} .

6. New CPOL radar processing.

ments in radar post-processing, in order to facilitate tropical convection studies.

We use a **3-step calibration** technique to calibrate CPOL.

2. Step 1: Monitoring clutter.

A ground monitoring technique: Pros: can be automated, precision, speed. Cons: relative calibration value.

Figure 3: Self-consistency results for CPOL (Nov. 2016).

5. New radar processing

Level 1a: Calibrated raw products (CF/radial PPI format only): Z_h , Z_{dr} , ϕ_{dp} , ρ_{hv} , spectrum width, and Doppler velocity.

Level 1b: 18 new fields, including rainfall rate, N_0 , D_w , radiosounding temperature, echo classification, etc. Available in CF/radial PPI formats or gridded format at two resolutions: 150 km range (2.5 km grid) and 70 km range (1 km grid). **Level 2**: Daily files with constant dimensions. All level 1b fields at 2.5 km altitude plus Steiner classification, echo top height, 0-dB height, etc. **Figure 5:** Top: (I) corrected reflectivity, (r) specific differential phase. Bottom: (I) hydrometeors classification, (r) rainfall rate.

Figure 1: Ground clutter monitoring for season 16/17.

3. Step 2: Comparison with TRMM/GPM.

Statistical comparisons with TRMM/GPM provide absolute calibration (Warren et al. 2017). Pros: Absolute calibration. Cons: accuracy of $\pm 3 \, dB$, only a dozen of comparisons available for each season.

Figure 6: First elevation scan for 2002-02-08 at 18:50.

7. Level 2 processing

Figure 2: Reflectivity offset for all seasons. CPOL-TRMM/GPM comparison in blue, RCA offsets in orange.

15:00. Top: (left) raw reflectivity, (right) corrected reflectivity. Bottom: (left) raw velocity, (right) dealiased velocity.

Figure 7: Slice at at 2.5 km of altitude 2014-01-10 at 10:00 (left) corrected reflectivity, (right) Steiner stratiform/convective classification.

Conclusion and Acknowledgment

The **relative calibration adjustment** (RCA) available. It will be **p** archive very soon. All the codes for proceed on open-source (see antenna offsets, alterations of the receiver, or the data processor. We have used this approach to correct the 19 yr of radar measurements. A new CPOL dataset has been produced and is versity.

) available. It will be **publicly available** on the ARM archive very soon.

All the codes for producing these data are available on open-source (see contact information). This project uses the Python ARM Radar Toolkit (Py-ART, funded by ARM) and the CSU_RadarTools toolkit from Colorado State University.

Contact Information

Github: https://github.com/vlouf Email: valentin.louf@monash.edu Twitter: @valentin_louf

Scan this QR code to download this poster and for the full list of references:

fig/QR_code.jpg