Spatiotemporal Variability of Z_{DR} Column Areal and Altitudinal Extent in Tornadic and Nontornadic Supercells

> Adrianne J. Engel Matthew S. Van Den Broeke University of Nebraska – Lincoln 28 August 2017

Background

- Assessment of microphysical distributions provides insight into processes that govern supercell updrafts
- How distributions vary through space and time is well-researched (e.g., Grant and Van Den Heever 2014; Van Den Broeke 2014), however, fullunderstanding not yet gained
- Polarimetric radar observations allow for inference of these distributions

Background

Z_{DR} Columns

- Hall et al. (1984) first to document narrow region of high Z_{HH} collocated with high Z_{DR} approximately 1.5 km above the environmental 0°C level

 Regions of enhanced values that extend above the environmental 0°C level and are co-located with the updraft (Kumjian and Ryzhkov 2008)

Background

- Results from the lofting of liquid drops above this level via strong vertical motion
- Are associated with strong updrafts (.e.g, Kumjian and Ryzhkov 2010; Johnson et al. 2016)
- Column height and areal extent increase as updraft intensifies (Kumjian et al. 2010; Kumjian 2013)
- Snyder et al. (2015) presented an algorithm to detect Z_{DR} columns

Radar from KTLX (Twin Lakes, Oklahoma) of a supercell at 2153 UTC on 19 May 2013. (a) Reflectivity (dBZ) at base-scan. (b) 1-dB Z_{DR} at 4.03°. (c) 0.5-dB Z_{DR} at 5.12°. White circle in (b) denotes a Z_{DR} column with the associated stormrelative location outlined in (a). White annotation in (c) denotes a 0.5-db Z_{DR} column aloft.

Research Question and Objective

 How do Z_{DR} columns vary as a function of environment and supercell type (tornadic or nontornadic)?

Objectives:

- $_{\odot}Assess$ the degrees to which Z_{DR} column:
 - 1. maximum altitudinal extent above the 0°C level, and
 - 2. areal extent at approx. 1 km above the 0°C level

vary <u>through time in updrafts</u> and <u>across</u> <u>environments</u>

Methodology

 Supercells identified following criteria of Thompson et al. (2003); all cases within 113 km of WSR-88D

 Cyclonic azimuthal shear met the mesocyclone threshold of Stumpf et al. (1998) in the two lowest elevation angles

Methodology

 1-dB Z_{DR} column maximum altitudinal extent determined for each supercell sample volume associated with analysis times (consistent with Snyder et al. 2015)

 Representative environmental 0°C level from the nearest RUC/RAP was subtracted from the column extent for each sample volume

- 0.5-dB column areal extent evaluated at elevation angle nearest 1 km above 0°C level
- Mean column altitudinal and areal extent calculated for cases with ≥ 3 analysis times
- Statistical relationships between mean column altitudinal/areal extent and environmental conditions in each subset were then explored

Cases

Date	Hours (UTC)	Radar	#Alt	#Areal	Туре	Tornado?
			Extent	Extent		
			Vols	Vols		
26 Feb. 2012	0200-0300	KBMX	11	6	tornadic	yes
14 Apr. 2012	1600-1700	KDDC	5	3	tornadic	yes
1 May 2012	0000-0100	KAMA	9	7	tornadic	no
1 June 2012	2300	KAMA	7	6	nontornadic	
24-25 Aug. 2012	2300-0000	KBIS	15	12	nontornadic	
4-5 Sept. 2012	2300-0000	KARX	13	11	tornadic	no
10 Mar. 2013	0200	KEWX	11	7	nontornadic	
18 Mar. 2013	2100-2200	KFFC	17	11	tornadic	yes
17-18 Apr. 2013	2300-0000	KFDR	21	9	tornadic	yes
17-18 May 2013	2300-0000	KDYX	18	12	tornadic	yes
20 May 2013	2100-2200	KEAX	18	7	tornadic	yes
21 May 2013	0100	KDMX	6	5	nontornadic	
30 May 2013	1800-1900	KTLX	10	7	nontornadic	
9-10 July 2013	2300-0000	KABR	15	14	nontornadic	
10 Aug. 2013	1800	KAKQ	7	5	nontornadic	
7 July 2014	0200-0300	KBIS	13	13	nontornadic	
7 July 2014	2000-2100	KBOX	19	11	nontornadic	

Results

Correlation Coefficient (r) for Z_{DR} Mean Altitudinal Extent Above the Environmental 0°C Level and Environmental Parameters. Bold numbers denote those with $r \ge \pm 0.50$.

Environmental Parameter	<u>Nontornadic r</u>	<u>Tornadic r</u>
LCL Height (m)	-0.04	0.53
LCL Temp (°C)	-0.26	-0.70
CCL Temp (°C)	0.58	-0.63
CIN (J kg ⁻¹)	-0.67	-0.10
9-km RH (%)	-0.58	-0.31
3-6-km RH (%)	-0.41	0.62
3-9-km RH (%)	-0.61	0.30
6-9-km RH (%)	-0.61	0.02
0-1-km Shear (m s ⁻)	-0.13	0.51
0-6-km Shear (m s ⁻¹)	0.27	0.50
$0-1-km SRH (m^2 s^2)$	-0.23	0.91
0-3-km SRH ($m^2 s^{-2}$)	-0.01	0.71
0-3-km VGP	0.23	-0.51

Correlation Coefficient (r) for Z_{DR} Mean Areal Extent Above the Environmental 0°C Level and Environmental Parameters. Bold numbers denote those with $r \ge \pm 0.50$.

Environmental Parameter	<u>Nontornadic r</u>	<u>Tornadic r</u>	
CCL Temp (°C)	0.75	-0.25	
CIN (J kg ⁻)	-0.32	-0.75	
0-3-km Shear (m s ⁻¹)	0.51	-0.33	
ESHEAR (m s ⁻¹)	0.23	0.59	
0-1-km SRH ($m^2 s^{-2}$)	0.39	0.52	
0-3-km SRH ($m^2 s^{-2}$)	0.56	0.16	
SCP	-0.39	0.55	
STP	-0.06	0.73	

Conclusions

- In general, environmental variables not as strongly predictive of Z_{DR} column areal extent as for altitudinal extent (consistent with Van Den Broeke 2016)
- Increased Z_{DR} column altitudinal and areal extent increase with instability (e.g., Van Den Broeke 2016)
- Areal extent more dependent upon kinematic parameters than thermodynamic parameters? (Gilmore et al. 2004; Van Den Broeke 2016)

Acknowledgements

- UNL Dept. of Earth and Atmospheric Sciences
- Advisor: Dr. Matthew Van Den Broeke
- Committee Members: Drs. Adam Houston and Mark Anderson
- Collaborators: Nick Humrich, Lena Heuscher, and Sabrina Jauernic

References

- Gilmore, M. S., J. M. Straka, and E. N. Rasmussen, 2004: Precipitation and evolution sensitivity in simulated deep convective storms: Comparisons between liquid-only and simple ice and liquid phase microphysics. Mon.Wea.Rev., 132, 1897–1916.
- Hall, M. P., J. W. Goddard, and S. M. Cherry, 1984: Identication of hydrometeors and other targets by dualpolarization radar. *Radio Science.*, **19** (1), 132-140.
- Johnson, M., Y. Jung, D. T. Dawson, and M. Xue, 2016: Comparison of Simulated Polarimetric Signatures in Idealized Supercell Storms Using Two-Moment Bulk Microphysics Schemes in WRF. Mon. Wea. Rev., 144, 971-996.
- Kumjian, M.R., 2013: Principles and applications of dual-polarization weather radar. Part II: Warm and cold season applications. *Journal of Oper. Meteor.*, **1**(19), 243-264.
- Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 1940-1961.
- Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. *Mon. Wea. Rev.*, **138**, 3762-3786.
- Kumjian, M.R., A. P. Khain, N. Benmoshe, E. Ilotoviz, A.V. Ryzhkov, and V. T. J. Phillips, 2014: The anatomy and physics of Z_{DR} columns: Investigating a polarimetric radar signature with a spectral bin microphysical model. J. Appl. Meteor. Climatol., 53, 1820-1843.
- Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. *Wea. Forecasting*, **30**, 1819–1844.
- Stumpf, G. J., A. Witt, E. D. Mitchell, P. L. Spencer, J. T. Johnson, M. D. Eilts, K. W. Thomas, and D. W. Burgess, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304-326.
- Thompson, R. L., R. Edwards, J. A. Hart, K. L. Elmore, and P. Markowski, 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. *Wea. Forecasting*, **18**, 1243-1261.
- VanDen Broeke, M. S., 2014: Effects of mid- and upper-level drying on microphysics of simulated supercell storms. *Electron. J. Severe Storms Meteor.*, **9** (3).
- Van Den Broeke, M. S., 2016: Polarimetric variability of classic supercell storms as a function of environment. J. Appl. Meteor. Climatol., 55, 1907-1925.