

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Characterisation of the melting layer spatial variability in the Alps on polarimetric X-band radar scans

Floor van den Heuvel^{1,2}, Marco Gabella², Alexis Berne¹

¹Environmental Remote Sensing Laboratory (LTE), EPFL, Lausanne, Switzerland ²Radar, Satellite and Nowcasting Department, MeteoSwiss, Locarno-Monti, Switzerland

Introduction

- Quantitative Precipitation Estimation (QPE) in the Alps is subject to many sources of error.
- Vertical profile (VPR) correction, is commonly applied to compensate for the lack of direct visibility with the radar.
- High altitude dual-polarization radars open up new possibilities to replace the average identified VPR with new correction techniques.

Objectives:

- Characterisation of the vertical structure of polarimetric radar **variables** from high-resolution observations in the alpine region.

Analysis of the spatiotemporal variability of these and the melting structures layer.

Research the relationship between radar variables measured at higher altitudes and **QPE at the** ground level.

Fig. 1: MeteoSwiss operational C-band radars (red crosses) And study region with X-band radar (blue cross).

Fig. 2: Example of RHI scan for Reflectivity (left) and typical vertical profiles for polarimetric variables during The winter season in the Valais (Switzerland).

The **Melting layer** (ML) is:

- the transition region from solid to liquid precipitation and an important feature of stratiform precipitation

- often assumed uniform in space and time for QPE and VPR extraction

- in an orographic context spatio-temporal variations of the ML can be expected to to be **non-negligable**.

Fig. 5: Examples of single-sided amplitude spectra for one event (left), and the model fitted to a single spectrum (right).

Fitted power model to individual spectrum 2016-11-04 MeanAE: 0.00473879480257 MedianAE: 0.0024478429614 – – a: 3.67E-05, b: -1.00

Preliminary results suggest that:

- **spatial variability** of ML variables can be distinguished with Fourier spectra (Figure 6)

- event spectra medians from the Valais campaign differ from nonalpine events, and **indicate** variability at smaller spatial scales (Figure 7)

- two clusters of b values van be observed for the Valais events (Figure 8).

References:

[1] Wolfensberger, D., Scipion, D. and Berne, A., 2016: Detection and characterization of the melting layer based on polarimetric radar scans. Quarterly Journal of the Royal Meteorological Society, 142, 108-124.