Dominant Hydrometeor Type Distributions within Brazilian Tropical Precipitation Systems Inferred from X-Band Dual Polarization Radar Measurements

1 - Context And Objectives

The present study aims at investigating for the first time the 3D evolution and characteristics of the hydrometeor distributions within brazilian tropical convective systems retrieved by a research polarimetric X-band radar in the frame of CHUVA project. Meteorological events from two Intense Observaton Periods (IOPs), that occurred during both wet and dry seasons respectively, are investigated through radar maesurements that took place in Manaus in 2014 (Amazon region).

Since microphysical description within tropical precipitation systems is pretty rare or even non-existent especially over the Brazil, hydrometeor dominant type distributions are determined by applying a new clustering based algorithm to dual polarization radar measurements. Unlike to the most popular Hydrometeor Classification Algorithms (HCAs) such as fuzzy logic, this clustering approach allows to directly makes the use of the radar measurements without making any first assumptions about polarimetric observable boundaries for each one of potential microphysical species.

This poster focuses on the first results about characteristics of clustering outputs through precipitation events oberseved during both the dry and wet season.

2 – Clustering Approach

The proposed clustering approach is mainly based on Grazioli et al (2015) methodology. unsupervised consists an Agglomerative Hierarchical Clustering technique that allows to merge N objects into n clusters (with n < N). Each object is defined by:

$x = \{Z_{H}, Z_{DR}, K_{DP}, \rho_{HV}, \Delta z\}$

where Z_u represents the horizontal reflectivity, Z_{DR} the differential reflectivity, K_{DP} the specific differential phase, ρ_{HV} the coefficient correlation, and Δz the difference between the altitude of the resolution volume considered and the altitude of the isotherm 0°C. Then all of those components are standardized to vary in a same order of magnitude [0;1].

To distinguish between differents objects within the available database two metrics are defined: i) euclidean distance, and ii) centroid merging rule.

A spatial constraint is also implemented to the data-driven clustering method that relies on the spatial smoothness of the partition in the physical space. This restriction aims to

3 – Cluster qualty metrics

2015, As defined in Grazioli et al. few 1.0 +--independent quality metrics have also been calculated at each iteration of the method to determine the optimal cluster partition between out each other:

i) Kappa index: evaluates the global spatial 0.6 smoothness of the partition. Kappa ranges from -1 to +1 and increases as the level of spatial smoothness increases.

ii) Accuracy Spread index (AS): evaluates the inhomogeneity of the spatial characteristics of a partition into nc clusters in the range [0;1]. Lower values are associated with better partitions

Optimal partition for the wet season: 6 clusters Optimal partition for the dry season: 7 clusters

Grazioli et al. 2015; Besic et al, 2016).

Contact : jean-francois.ribaud@inpe.br

Jean-François Ribaud¹, Luiz A.T. Machado¹, and Thiago Biscaro¹

1 National Institute for Space Research (INPE), Center for Weather Forecast and Climate Studies (CPTEC), Cachoeira Paulista, SP, BRAZIL

5		Clu	ust	er	cor	mp	ari	SO	ons	s a	nd	DP	POL	_ ch	nar	racteristics
		TYPE nc 1 nc 2 nc 3 nc 4 nc 5 nc 6		DZ 96.96 0.18 0.0 30.24 82.48 1.34	RN 0.82 0.01 0.0 12.39 13.42 91.38	MH 0.(0.(9.0.) 2.0. 8.2.	01 0 0 01 0 0	WS 2.09 16.01 16.31 51.5 4.1 5.27	D 6 2 3 6	S .0 .9.21 25.59 5.77 3.0 3.0	LDG 0.11 1.85 55.13 0.3 0.0 0.0	HDG 0.0 0.0 3 0.6 0.0 0.0 0.0)1); ;7))	VI 0.0 8.76 2.3 0.83 0.0 0.0	CR 0.0 3.97 0.01 0.96 0.0 0.0	Table 5.1 Confusion matrix comparing each cluster to the fuzzy logic method outputs used in Besic et al, 2016.
	200	# Nc nc 1 nc 1 nc 1 nc 1 nc 1	Var ZH ZDR KDP RhoHV	Mean 33.78 0.98 0.61 0.98	STD 5.57 0.55 0.76 0.01	Q1% 21.5 -0.2 -0.42 0.93	Q5% 24.0 0.19 2 -0.1 0.9	Q 2 2 0 14 - 1 0	10% 6.0).35 0.04 96	Q25% 30.0 0.58 0.13 9.97	Q50% 34.0 0.9 0.4 0.98	Q75% 37.5 1.29 0.84 0.99	Q90% 41.0 1.69 1.59 0.99	Q95% 42.5 1.92 2.2 0.99	Q99% 45.5 2.63 3.44 1.0	
< L	1	nc 2 nc 2 nc 2 nc 2	ZH ZDR KDP RhoHV	16.48 0.8 0.23 0.98	4.79 0.56 0.35 0.02	4.0 -0.52 -0.52 0.9	9.0 2 -0.0 2 -0.1 0.9	1 95 0 26 - 3 0	1.0 .11 0.16).94	13.5 0.43 0.01 0.96	16.5 0.82 0.19 0.98	19.0 1.13 0.41 0.99	22.5 1.53 0.68 1.0	25.0 1.76 0.87 1.0	29.5 2.31 1.23 1.0	Table 5.2 Dual polarization characteristics for each
	ת -	nc 3 nc 3 nc 3 nc 3	ZH ZDR KDP RhoHV	28.53 -0.01 0.29 0.98	5.45 0.76 0.54 0.02	16.0 -2.17 -0.91 0.91	19.0 7 -1.3 1 -0.4 0.94) 2 39 - 17 - 1 0	1.0 1.07 0.25).95	24.5 -0.52 0.01 0.97	29.0 0.19 0.27 0.98	32.5 0.58 0.55 0.99	35.0 0.82 0.89 1.0	36.5 0.98 1.15 1.0	39.0 1.21 1.69 1.0	different cluster and each different radar observable with:
		nc 4 nc 4 nc 4 nc 4	ZH ZDR KDP RhoHV	19.99 1.05 0.17 0.92	6.87 0.79 0.39 0.05	1.5 -0.83 -0.66 0.81	8.5 -0.1 5 -0.3 0.83	1 13 0 35 3 0	1.5 .19 0.23).85	15.5 0.58 -0.05 0.88	20.0 0.98 0.14 0.92	25.0 1.53 0.35 0.96	28.5 2.08 0.6 0.98	30.5 2.39 0.79 0.99	34.5 3.26 1.4 1.0	deviation (STD), and set of quantiles (Q).
		nc 5 nc 5 nc 5 nc 5	ZH ZDR KDP RhoHV 7H	18.90 0.68 0.08 0.98 34.74	6.21 0.53 0.32 0.02	4.0 -0.83 -0.51 0.92 25.0	8.5 -0.1 L -0.2 0.94	1 13 0 27 - 1 0	1.0 .11 0.18).95	14.5 0.43 -0.06 0.97	19.5 0.66 0.05 0.99	23.5 0.98 0.18 0.99	27.0 1.29 0.35 1.0	28.5 1.53 0.51 1.0	31.0 2.0 1.23 1.0	
		nc 6 nc 6 nc 6	Zn ZDR KDP RhoHV	1.26 0.86 0.97	0.72 1.02 0.02	-0.13 -0.6 0.91	0.27 -0.1 0.93	2 2 2 7 3 0	8.0 .5 0.03).94	31.0 0.82 0.18 0.96	34.3 1.13 0.54 0.98	38.0 1.61 1.29 0.99	42.0 2.16 2.25 0.99	44.5 2.63 2.89 1.0	49.5 3.5 4.27 1.0	
—		TYPE nc 1 nc 2 nc 3 nc 4 nc 5 nc 6 nc 7	D2 53 0. 5. 1. 64 8) 99	2 3.61 .02 .7 .7 4.93 5.37 8.47	RN 0.01 0.0 11.68 87.0 27.82 8.7 0.0	MH 0.0 1.3 2.78 0.0 0.0 0.0	WS 2.0 10. 65. 8.0 7.7 5.0)6 . 26 . 43)8 2) 2 2	DS 34.94 34.5 1.42 0.0 0.0 0.12 0.03	LD0 1./ 51 11 0. 0. 0.	G 45 .5 .83 41 0 16 04	HDG 0.02 3.67 0.3 0.02 0.0 0.0 0.0	VI 6.75 0.0 2.35 0.01 0.03 0.62 0.19	CR 1.16 0.0 0.0 0.0 0.01 0.04 0.03	Ta cc fu in	able 5.3 Confusion matrix omparing each cluster to the izzy logic method outputs used Besic et al, 2016.
	2	# Nc nc 1 nc 1 nc 1 nc 1	Var ZH ZDR KDP RhoHV	Mean 15.25 0.89 0.05 0.97	STD 5.59 0.69 0.37 0.03	Q1% -0.5 -0.91 -0.83 0.87	Q5% 6.0 -0.13 -0.48 0.91	Q10% 9.0 0.11 -0.33 0.93	Q25% 12.0 0.5 -0.1 0.96	Q50% 15.(0.9 4 0.0 0.9	6 Q75 9 18. 1.2 4 0.7 9 1.(i% Q90% .5 22.0 21 1.69 22 0.44 1.0	Q95% 24.0 2.0 0.61 1.0	Q99% 27.5 2.87 1.13 1.0		
	D D D D	nc 2 nc 2 nc 2 nc 2 nc 2	ZH ZDR KDP RhoHV	31.93 0.91 0.41 0.97	5.27 0.79 0.85 0.02	24.5 -0.99 -1.16 0.88	25.5 -0.2 -0.67 0.93	26.0 0.19 -0.37 0.95	28.0 0.5 -0.0 0.96	31.0 0.8 1 0.2 0.9) 35. 2 1.2 8 0.6 8 0.9	0 39.5 21 1.84 56 1.22 98 0.99	42.5 2.47 2.01 0.99	47.5 3.42 3.7 1.0	Τε	able 5.4 Dual polarization
L (<u>П</u>	nc 3 nc 3 nc 3 nc 3	ZH ZDR KDP RhoHV	27.46 1.16 0.62 0.97	8.23 0.88 0.91 0.02	9.5 -0.83 -0.74 0.88	14.5 -0.2 -0.31 0.93	17.0 0.19 -0.15 0.94	22.0 0.58 0.07 0.96	27.0 1.1 0.3 0.9) 32. 3 1.6 7 0.5 7 0.5	.5 38.5 59 2.24 94 1.71 98 0.99	41.5 2.71 2.38 0.99	48.0 3.57 3.9 1.0	ch cl	naracteristics for each different uster and each different radar
		nc 4 nc 4 nc 4 nc 4	ZH ZDR KDP RhoHV	35.36 2.29 1.39 0.97	6.13 1.0 1.34 0.02	20.5 0.03 -0.85 0.87	25.5 0.74 -0.2 0.92	28.0 1.06 0.04 0.93	31.5 1.61 0.46 0.96	35.0 2.24 1.1 0.9) 39. 1 2.8 2.0 7 0.9	43.5 37 3.57 35 3.16 38 0.99	46.0 4.05 3.96 0.99	49.5 4.83 5.77 1.0	OL St Of	oservable with: the mean value, andard deviation (STD), and set f quantiles (O).
	ב	nc 5 nc 5 nc 5 nc 5 nc 5	ZH ZDR KDP RhoHV ZH	20.99 1.23 0.39 0.97 12.69	6.14 0.81 0.03 6.36	4.5 -0.68 -0.88 0.86 -2.0	11.0 -0.05 -0.38 0.9 2.0	13.5 0.27 -0.22 0.92 4.5	0.74 -0.0 0.96 8.5	1.21 1.21 1.21 1.21 1.21 1.21 1.21	L 1.6 0.5 B 0.9 5 17	.5 25.0 39 2.24 54 1.2 39 0.99 .0 21.0	2.55 1.88 1.0 24.0	34.0 3.42 3.65 1.0 27.5		
		nc 6 nc 6 nc 6 nc 7	ZDR KDP RhoHV ZH	-1.69 1.39 0.96 8.53	0.8 1.47 0.03 4.58	-3.51 -0.52 0.86 -3.0	-3.04 -0.17 0.89 0.0	-2.8 -0.01 0.91 2.0	-2.25 0.31 0.94 5.5	5 -1.6 1.03 0.97 9.0	i2 -1. 3 1.9 7 0.9 12	.07 -0.8 2 3.58 38 0.99 .0 14.0 1.76	3 -0.68 4.6 1.0 15.0	3 0.66 5.96 1.0 16.5		
		nc 7 nc 7 nc 7	ZDR KDP RhoHV	0.87 0.05 0.97	0.69 0.36 0.02	-0.68 -0.77 0.9	-0.28 -0.43 0.93	-0.05 -0.3 0.94	0.43 -0.13 0.96	0.9 3 0.03 0.9{	1.2 3 0.2 3 0.9	29 1.76 2 0.4 39 1.0	2.0 0.59 1.0	2.55 1.23 1.0		
6	- (Coi	ncl	usi	on	s &	ι Ο	ut		ok						
• T dc ha pc re 2(ar cc sii	he omin s olar gio 014 nd onsi mila	clus nant beer izatio n du . Firs temp isten ar ob	tering hydi n de on ra Jring st res berati icy c	y app rome velop dar both sults ure i of th	proac teor ped that n we base nform e m	h tec withi for took et an ed on natior	hniq in ra a) plac d dr rada n sh dolo(ue f idar K-ba e ir Ty s ar o ow Jy	to cla vol and An seas bsei the to (assif lume dua nazo on i rvabl goc dete	iy s I- n in le od ct	0.08 0.07 0.06 0.03 0.04 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.000000		30 40 ZH [dBZ] 0 1 2 KDP [deg/km JSters (RAIN wet se DRIZZLE we 50 50 3 4 distrib	eason RAIN dry season et season DRIZZLE dry season
			voloto	مات	otor	oont	ant	inte		tatic	V Nor I	wet and dry seasons for both the rain and drizzle microphysical species, a) 7 [dB7] b) 7 [dB1 c) K				

- The complete cluster content interpretation are actually ongoing through multiple runs. Several aspects are also investigated such as:
- in-situ measurements (research aircrafts)
- disdrometers comparisons
- model outputs (CRSIM)
- wet / dry season differences for a same hydrometeor class

7 - References

Bechini, R. and Chandrasekar, V.: A Semisupervised Robust Hydrometeor Classification Method for Dual-Polarization Radar Applications, J. Atmos. Ocean. Technol., 32, 22–47, 2014.

Besic, N., Grazioli, J., Gabella, M., Germann, U., and Berne, A. Hydrometeor classification through statistical clustering of polarimetric radar measurements: a semi-supervised approach. Atmos. Meas. Tech. 9, 2016.

Dolan, B. and Rutledge, S. A.: A Theory-Based Hydrometeor Identification Algorithm for X-Band Polarimetric Radars, J. Atmos. Ocean. Technol., 26, 2071–2088, 2009.

Grazioli, J., Tuia, D., and Berne, A.: Hydrometeor classification from polarimetric radar measurements: a clustering approach, Atmos. Meas. Tech., 8, 149–170, doi:10.5194/amt-8-149-2015, 2015.

38th Conference on Radar Meteorology, Chicago, IL, USA, 28 august - 1 September 2017

CHUVA

FAPESP

-62.0 -61.5 -61.0 -60.5 -60.0 -59.5

Longitude [°]