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. . L L . - Table 5.1 Confusi tri
The present study aims at investigating for the first time the 3D evolution and characteristics oo N e

: : : : : i h cluster to th
of the hydrometeor distributions within brazilian tropical convective systems retrieved by a WET SEASON DRY SEASON : : ; , ; * % tway logic method outouts

: : fuzzy logic method outputs
research polarimetric X-band radar in the frame of CHUVA project. Meteorological events : ' : : : : s used in Besic et al, 2016.

from two Intense Observaton Periods (IOPs), that occurred during both wet and dry seasons
respectively, are investigated through radar maesurements that took place in Manaus in
2014 (Amazon region).

Table 5.2 Dual polarization
characteristics for each
different cluster and each
different radar observable with:
the mean value, standard
deviation (STD), and set of
guantiles (Q).

Since microphysical description within tropical precipitation systems is pretty rare or even
non-existent especially over the Brazil, hydrometeor dominant type distributions are
determined by applying a new clustering based algorithm to dual polarization radar
measurements. Unlike to the most popular Hydrometeor Classification Algorithms (HCAS)
such as fuzzy logic, this clustering approach allows to directly makes the use of the radar
measurements without making any first assumptions about polarimetric observable
boundaries for each one of potential microphysical species.
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This poster focuses on the first results about characteristics of clustering outputs through Evonc i ZH [dBZ] ZH [dBZ]

precipitation events oberseved during both the dry and wet season. Figure 4.1.1 Bivariate domains for the 6 clusters of the wet season. Figure 4.1.2 Bivariate domains for the 6 clusters of the wet season.
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Table 5.3 Confusion matrix
comparing each cluster to the
fuzzy logic method outputs used
in Besic et al, 2016.
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2 — Clustering Approach

The proposed clustering approach is mainly improve the spatial consistency of clustering
based on Grazioli et al (2015) methodology. outputs by checking them four nearest
It consists In an unsupervised neighbouring objects (Bechini et al. 2014,
Agglomerative  Hierarchical  Clustering Grazioli et al. 2015; Besic et al, 2016).
techniqgue that allows to merge N objects
Into n clusters (with n < N). Each object is Initially the clustering method deals with a
defined by: subset of ~20 000 observations randomly
X={Z, Z... K AZ) chosen over P_precipitations events, to b_oth ) S [ g Yo
_ save computationally costs and get a first | 000 00> 004 oo oes 1 90 092 004 066
where Z, represents the horizontal general behaviour of radar measurements. _ eV L (0P el eV L
reflectivity, Z_ the differential reflectivity, K_, A N S G S

the specific differential phase, p,, the N obs. in N clusters

coefficient correlation, and Az the difference
between the altitude of the resolution
volume considered and the altitude of the
iIsotherm 0°C. Then all of those components
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Table 5.4 Dual polarization
characteristics for each different
cluster and each different radar
observable with: the mean value,
standard deviation (STD), and set
of quantiles (Q).
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n<N Figure 4.2.1 Clusters distribution for one run extracted for the wet season. Figure 4.2.2 Clusters distribution for one run extracted for the dry season. 6 - Co n CI u S i 0 ns & O utl Oo k
C " labelled clusters a) Z,, [dBZ], b) Z_, [dB], ¢) K, [deg/km], d) p,,, [-], and e) Az [m]. a) Z, [dBZ], b) Z_ [dB], c) K_, [deg/km], d) p,,, [-], and €) Az [m].
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* The clustering approach technique to classify
¢ TN e T : g | T : t, £ dominant hydrometeor within radar volumes
¢ Cluster content nterpretation ST R W B W Yo 5 ol i . i has been developped for a X-band dual-
A b R R e e E Tt w2 LWE e e e polarization radar that took place in Amazon

Al W T o : S E - & - - : B 2 region during both wet and dry season in
2014. First results based on radar observable
and temperature information show the good
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To distinguish between differents objects
within the available database two metrics rind lowest spatial score
Merging of associated cluster

are defined: i) euclidean distance, and ii) B ]
. . opt Clusters
centroid merging rule. : (not labellec)
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Several aspects are also investigated such as: ™
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