Australian Radar Archive in the Cloud
Applications to Research and Industry
Joshua S. Soderholm\(^1,2\) and Matthew Coleman\(^2\)
\(^1\)Atmopsheric Observations Research Group, The University of Queensland, QLD, Australia
\(^2\)Fugro Roames, Brisbane, Australia

Why Open Data?
- Identified as a 'nationally significant' data collection as part of the Australian Research Data Services (RDS) project
- BoM radar network - one of the largest remote sensing assets in Australia
- Without data access there can be no science - **Securing Australia's Role in the International**
- Remove the $, delay and data issues with current cost-recovery service

Environment

Hosting
- Industry (Roames)
- RDS

Access
- Met Office
- Australian Government Bureau of Meteorology
- Monash University - Selex Radar Workshops

Community
- Py-ART
- TERN
- NCI
- Ands

Integration with open source, radar user communities, and industry engagement. aws.amazon.com/nearth

Leveraging from existing scientific infrastructure, portals and communities to deliver the Australia Radar Archive

Implementation
- Access through portals and APIs (THREADS/OpenDAP)
- Quality Controlled, ISO/IEC 11179 Standard for Metadata
- Uniform, predictable archive structure and names

- 768 yrs of data (27 TB)
- Some sites > 20 year record
- Issues with diversity, outages and moving radars

- Open data format (odimh5)
 - Support in many programming languages
 - Radar toolkits (wradlib, baltrad, py-art)
 - Self describing data format (HDF5)
 - Developed by EUMETNET (31 European Countries)
 - Replacing BoM rapic format

Applications

National Convective Storm Climatology
- Ground truth for long-term environmental climatologies (e.g., calibrating parameters)
- Finescale hazard modelling (Applications for insurance)
- Energy Distribution
 - Clearance vs Risk
 - Maintenance cycle
 - Assessment of new corridors
- Develop an understanding thunderstorm drivers
 - local (e.g., terrain, sea breeze)
 - synoptic (e.g., fronts, wind regimes)
 - climate scale (ENSO forcing)

Hail and Wind Nowcasting for Industry
- The presence of large hail can provide a proxy for damaging winds -> gridded swaths radar-derived estimates of hail can provide a powerful tool to assessing likely impact
- Doppler winds is often difficult to interpret. Single Doppler derived winds (Xu et al 2006) provides a technique for estimating potential near surface wind gusts that can be readily integrated into asset management.

| Hail Distribution
| Wind Distribution |

Future
- Delivery of realtime volumetric data from the Australian Radar Network and radar-derived hazard product.
- Transition to CIPradial 2.0 improve data accessibility and interchangability with international communities
- South East Queensland Hazard Analysis and Verification Testbed (SEQ-HAVT) to refine hazard nowcasting and climatology products
- Integration of hazard products with industry asset geospatial datasets to automate mitigation and risk assessment during severe thunderstorm events
- Open access for Australian field campaign datasets, including the UQ-XPOL mobile radar

Made using Py-ART (Collis, S et al) and NASA Single Dop (T. Lang)