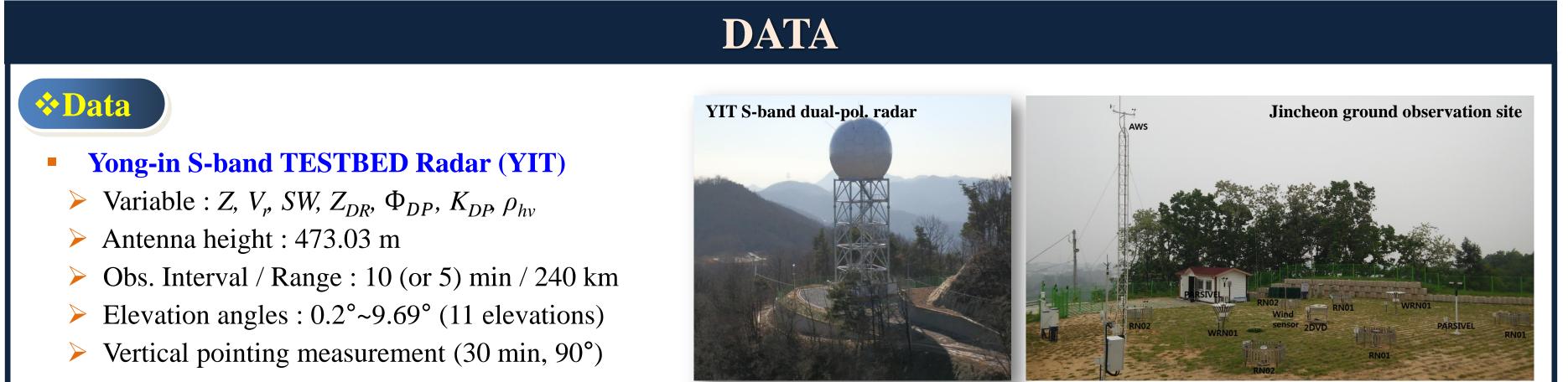
**Poster ID : 275** 

# Calibration of System bias in $Z_H$ and $Z_{DR}$ of S-band Dual-Polarization Radar

Korea Meteorological Administration


Hae-Lim Kim<sup>\*</sup>, Sung-Hwa Jung, Sung-A Jung, and Sun-Ki Lee



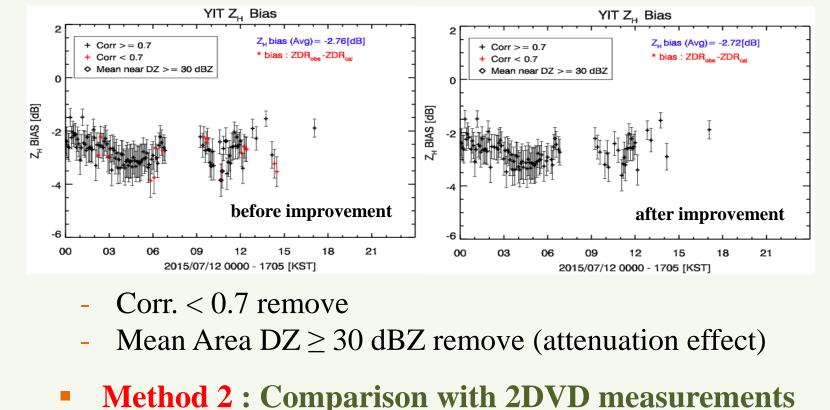
Radar Analysis Division Weather Radar Center, Korea Meteorological Administration, Seoul, Republic of Korea. \* hlk0919@korea.kr

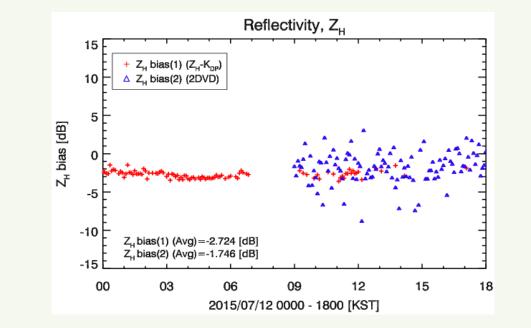
# INTRODUCTION

- Polarization capability of weather radar contributes to improvement of radar data quality control, advanced quantitative precipitation estimation (QPE), and development of hydrometeor classification. However, radar measurements suffered from the mis-calibration of radar system, this error leads to significant uncertainty in radar-based QPE as well as hydrometeor classification.
- In this study, we analyzed long-term variability of calibration bias in Z<sub>H</sub> and Z<sub>DR</sub> measurements from S-band dual-polarization radar to product stable and accurate system bias of radar.
- Two  $Z_H$  biases were derived based on the self-consistency principle between  $Z_H$  and specific differential phase ( $K_{DP}$ ) and the direct comparison with simulated  $Z_{H}$  from two-dimensional video disdrometer (2DVD), respectively.  $Z_{DR}$  biases were calculated by using three approaches based on empirical relationship between  $Z_H$  and  $Z_{DR}$ , vertical pointing measurements, and direct comparison with simulated  $Z_{DR}$  from 2DVD.



# RESULTS

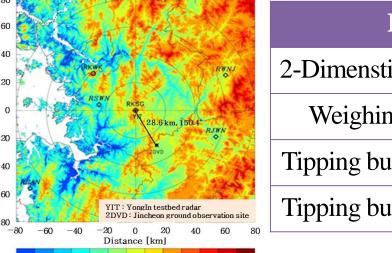

## **Cases 1 : 12 July 2015**

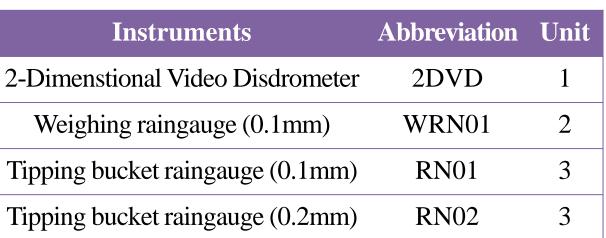

Hourly rain rate < 5 mm hr<sup>-1</sup>, Total rainfall Acc. : 26.9 mm (RN01\_Avg)

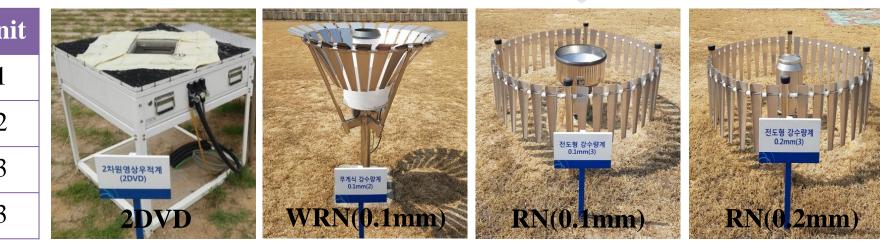
Reflectivity, Z [dBZ]

## **\*** Z<sub>H</sub> calibration bias

Method 1 : Z<sub>DR</sub>-K<sub>DP</sub> self-consistency



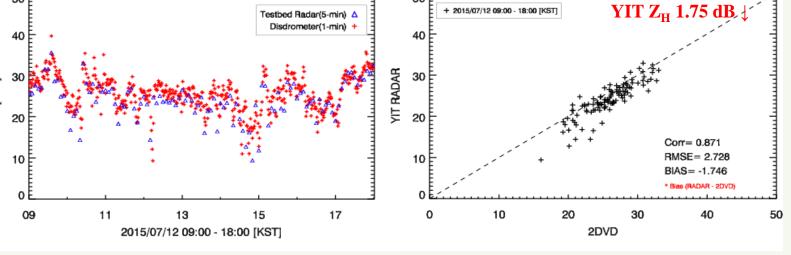





#### <Time series of the Z<sub>H</sub> bias according to calibration methods>

| Calibration methods | Z <sub>H</sub> Calibration bias [dB] | difference [dB] |
|---------------------|--------------------------------------|-----------------|
| Method 1            | -2.72                                | 0.97            |
| Method 2            | -1.75                                | 0.97            |

- **Jincheon ground** observation site
- ~ 28 km from YIT



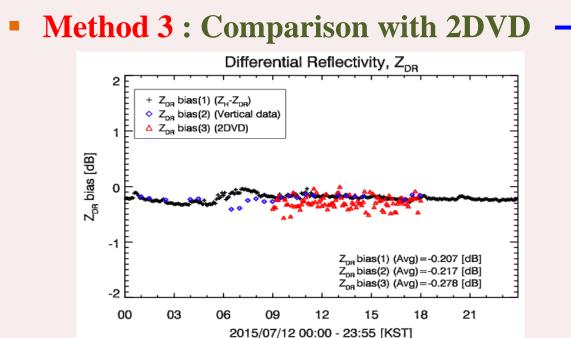





## **Period : 2015. 5 ~ 2016. 10 rainfall cases (19 cases)**

## > 2DVD measurements with a rainfall difference of less than 20 % are used

| Data      | Obs. Time | Rain | fall [mm] | Rainfall       | Date      | Obs. Time | Rainfall [mm] |      | Rainfall |
|-----------|-----------|------|-----------|----------------|-----------|-----------|---------------|------|----------|
| Date      | [KST]     | 2DVD | Avg_RN01  | difference [%] |           | Date      | [KST]         | 2DVD | Avg_RN01 |
| `15.05.11 | 1200-2400 | 12.0 | 13.4      | 10.7           | `16.05.03 | 0000-2400 | 23.6          | 26.2 | 9.8      |
| `15.06.26 | 0000-1400 | 31.0 | 37.4      | 17.0           | `16.05.10 | 0000-2400 | 16.9          | 18.3 | 7.7      |
| `15.07.12 | 0000-2400 | 24.0 | 26.9      | 10.6           | `16.05.24 | 0000-1600 | 15.8          | 17.7 | 10.4     |
| `15.07.23 | 1000-2400 | 44.2 | 46.4      | 4.8            | `16.07.01 | 0500-2400 | 65.0          | 78.5 | 17.26    |
| `15.10.27 | 0000-1200 | 15.3 | 18.2      | 15.7           | `16.09.17 | 0000-1400 | 25.7          | 30.4 | 15.3     |
| `15.11.13 | 0000-2400 | 24.2 | 27.9      | 13.3           | `16.10.05 | 0000-1400 | 10.6          | 12.2 | 13.6     |
| `16.04.07 | 0000-1100 | 15.7 | 18.2      | 14.0           | `16.10.07 | 1200-2400 | 11.6          | 13.7 | 14.9     |
| `16.04.13 | 0000-1200 | 15.1 | 17.1      | 11.5           | `16.10.08 | 0000-1200 | 9.81          | 11.4 | 14.2     |
| `16.04.16 | 1100-2400 | 17.9 | 20.4      | 12.4           | `16.10.25 | 0000-1100 | 28.1          | 32.5 | 13.66    |
| `16.05.02 | 1700-2400 | 12.8 | 14.2      | 9.6            |           |           |               |      |          |




<Time series and scatter plot of the Z<sub>H</sub> obtained by 2DVD and YIT radar>

## **\*** Z<sub>DR</sub> calibration bias

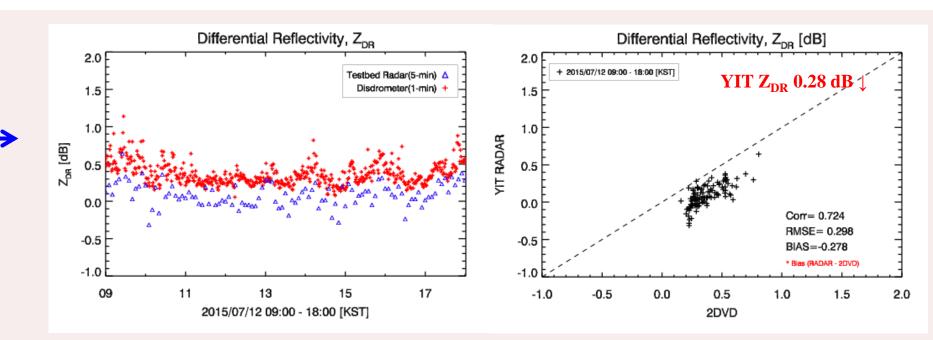
Reflectivity, Z

- Method 1 : Z<sub>H</sub>-Z<sub>DR</sub> mean relationship
- Method 2 : Vertical pointing measurements



#### <Time series of the Z<sub>DR</sub> bias according to calibration methods>

| Calibration methods | Z <sub>DR</sub> Calibration bias [dB] |
|---------------------|---------------------------------------|
| Method 1            | -0.21                                 |
| Method 2            | -0.22                                 |
| Method 3            | -0.28                                 |


## **Cases 2 : 25 October 2016**

Hourly rain rate < 5 mm hr<sup>-1</sup>, Total rainfall Acc. : 26.9 mm (RN01\_Avg)

## **\*** Z<sub>H</sub> calibration bias

Method 1 : Z<sub>DR</sub>-K<sub>DP</sub> self-consistency

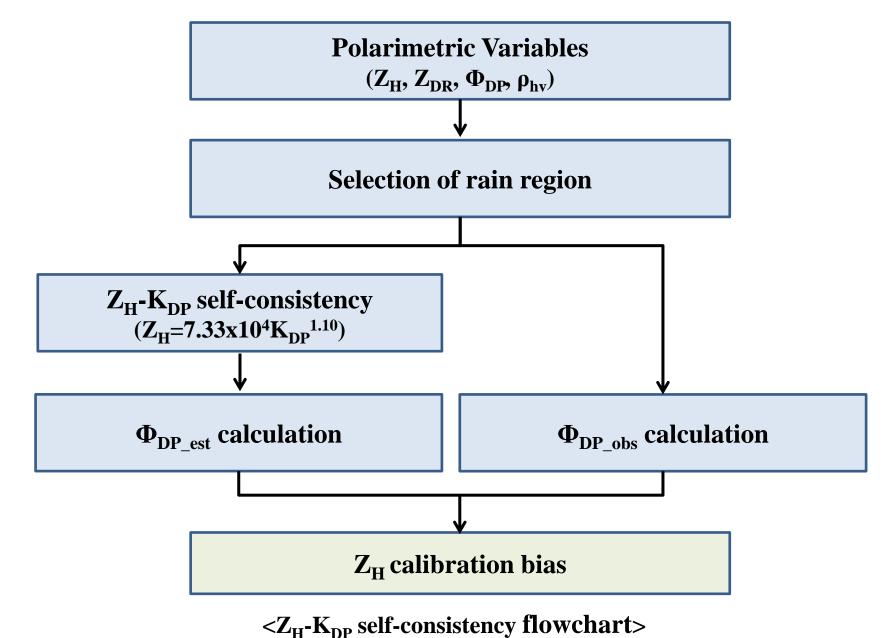
- $\rightarrow$  Method 1 :  $Z_{H}$  biases are stable, however the number of bias is small even though it is raining
- > Method 2 :  $Z_H$  biases are affected by the precipitation system that passes over the 2DVD => variation of bias is larger than method 1

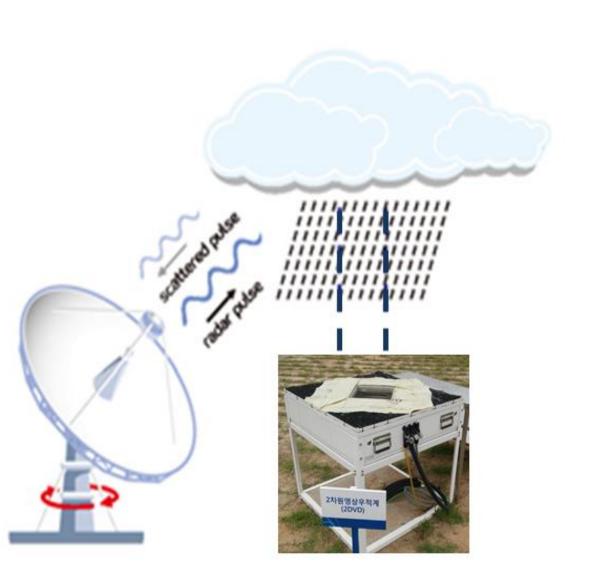


#### <Time series and scatter plot of the Z<sub>DR</sub> obtained by 2DVD and YIT radar>

- > Method 1 : using the  $Z_{DR}$  data of the 10 ~ 20 dBZ section with small microphysical change
  - $\Rightarrow$  Z<sub>DR</sub> biases value are stable and many data are used for the calculation
- $\rightarrow$  Method 2 : a stable Z<sub>DR</sub> biases are calculated at the time of the precipitation passes over the radar site
- > Method 3 : variation of bias is larger than other methods

YIT Radar PPI(DZ) 2016 09 17 08:30(Ks


# METHODOLOGY

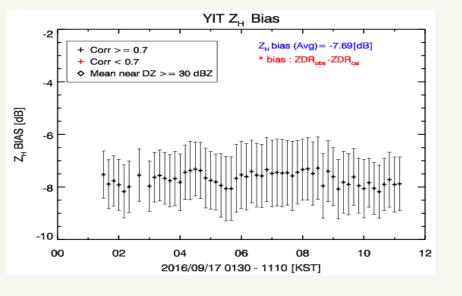

## Calibration bias algorithms

#### Absolute calibration of Z<sub>H</sub>

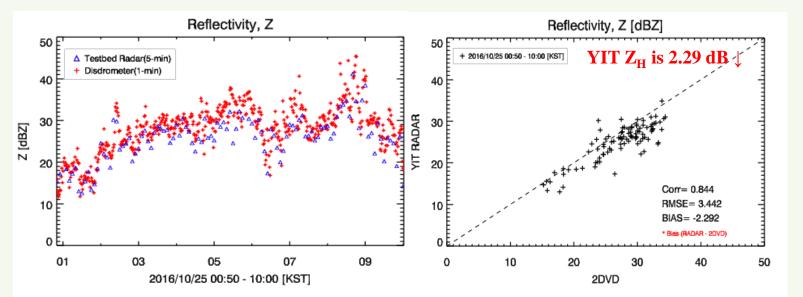
 $\geq$  Z<sub>H</sub> can be calibrated by using <sup>1)</sup> self-consistency of polarization radar, and <sup>2)</sup> 2DVD measurements

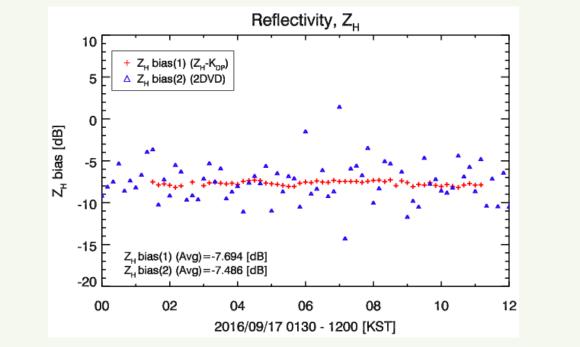
|                     | Method | Description                                                                  |  |
|---------------------|--------|------------------------------------------------------------------------------|--|
| Z <sub>H</sub> bias |        | Self-consistency constraint between $Z_H$ and $K_{DP}$ (Goddard et al. 1994) |  |
|                     | 2 2DVD | Direct comparison with simulated Z <sub>H</sub> from 2DVD measurements       |  |





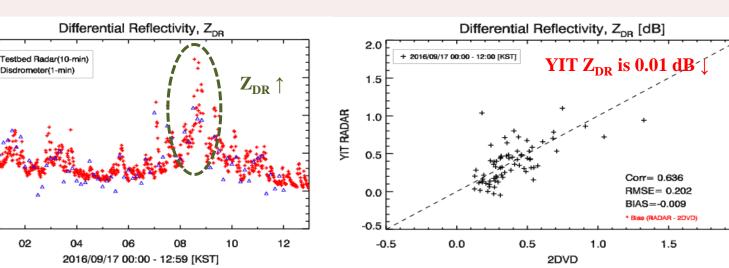

#### <Comparison of observed $Z_H$ with simulated $Z_H$ from the 2DVD>


- **Calculation of System Bias in Z<sub>DR</sub>**
- $\geq$  Z<sub>DR</sub> calibration biases are calculated by three methods :


Weather Radar Center, Korea Meteorological Administration.

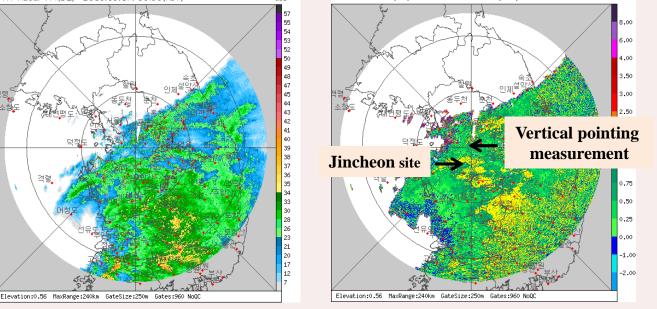
| Method | Description |
|--------|-------------|




#### Method 2 : Comparison with 2DVD measurements

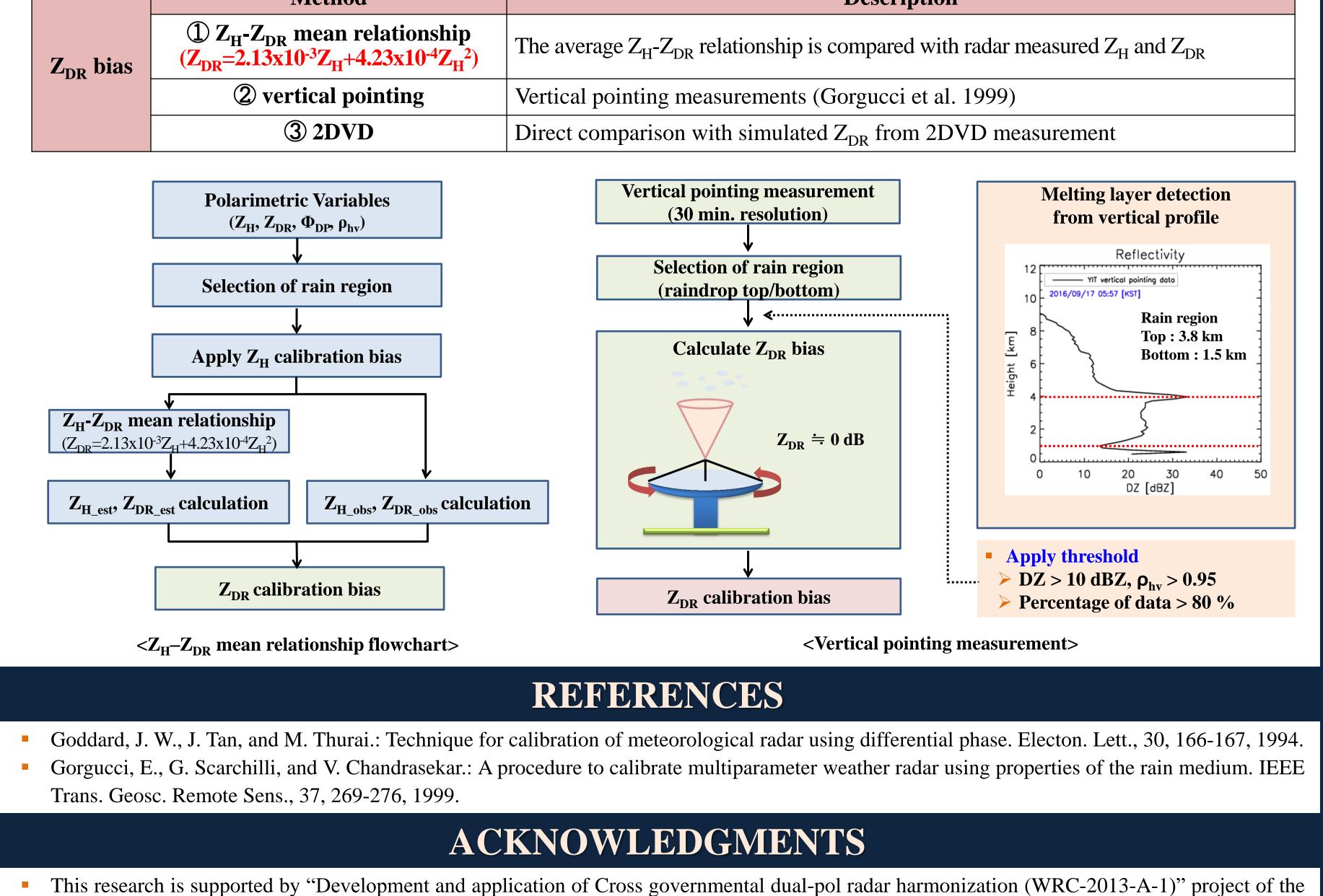




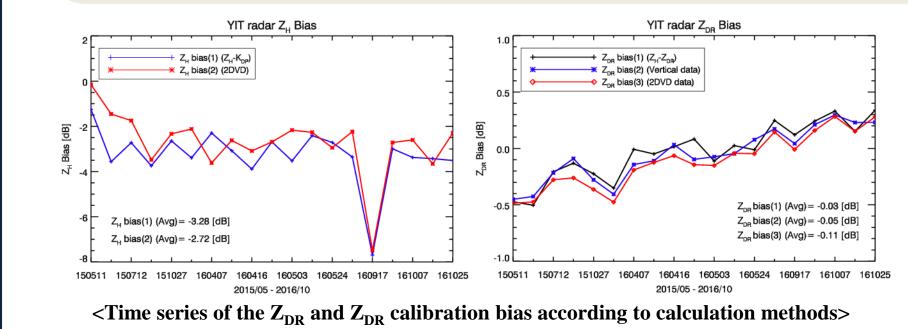

| Calibration methods | Z <sub>H</sub> Calibration bias [dB] | difference [dB] |  |
|---------------------|--------------------------------------|-----------------|--|
| Method 1            | -7.69                                | 0.20            |  |
| Method 2            | -7.49                                | - 0.20          |  |






| Differential Reflectivity, Z <sub>DR</sub>                                                                                                                             |                        |                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------------------------------|
| $1 \xrightarrow{+ z_{DR} \text{ bias}(1) (Z_H^{-} Z_{DR})}{D \text{ bias}(2) (Vertical data)} \xrightarrow{+ z_{DR} \text{ bias}(2) (Vertical data)}{Bias} \downarrow$ | Calculation<br>methods | Z <sub>DR</sub> Calibration bias<br>[dB] |
|                                                                                                                                                                        | Method 1               | 0.12                                     |
| $08 \sim 09 \text{ KST} \qquad \qquad$          | Method 2               | 0.04                                     |
| -2 E                                                                                                                                                                   | Method 3               | -0.01                                    |






< 17 Sep 2016 0830 KST (left) DZ and (right) Z<sub>DR</sub> 0.56° PPI>

**Method 3** :  $Z_{DR}$  bias calculated from the 2DVD also fluctuated around 08~09 KST, when the  $Z_{DR}$  greatly fluctuated  $\Rightarrow$  Biases depending on the precipitation system in the observed space



#### **Result :** May 2015 ~ October 2016 (19 rainfall cases)



|                                  | Calibration method              |          | Z <sub>H</sub> bias (Avg) | Difference                          |  |
|----------------------------------|---------------------------------|----------|---------------------------|-------------------------------------|--|
| $Z_{\rm H}$ calibration bias     | Z <sub>H</sub> -K <sub>DP</sub> | Method 1 | -3.28 dB                  | 0 56 dP                             |  |
|                                  | 2DVD                            | Method 2 | -2.72 dB                  | 0.56 dB                             |  |
| Z <sub>DR</sub> calibration bias | Z <sub>H</sub> -Z <sub>DR</sub> | Method 1 | -0.03 dB                  |                                     |  |
|                                  | Vertical pointing               | Method 2 | -0.05 dB                  | 0.06~0.08 dB<br>(method 3 standard) |  |
|                                  | 2DVD                            | Method 3 | -0.11 dB                  |                                     |  |

- Temporal trend of  $Z_{H}$  and  $Z_{DR}$  biases are well matched with each other
- However, the standard deviation of both  $Z_{H}$  and  $Z_{DR}$  biases obtained from 2DVD measurements were relatively larger than other methods  $\Rightarrow$  due to DSD variability in vertical, drop sorting, under-sampling problem of 2DVD
- Stability monitoring of radar system is possible through analysis of calibration bias

# SUMMARY

- In this study, we examined calibration bias of  $Z_{H}$  and  $Z_{DR}$  according to different calibration methods during the period from May 2015 to October 2016.
- As a result,  $Z_H$  mean bias : -3.28 ~ -2.72 dB,  $Z_{DR}$  mean bias : -0.03 ~ -0.11 dB
- $\succ$  **Z<sub>H</sub> calibration bias**
- $Z_{H}$ - $K_{DP}$  self-consistency : this method is stable, however the number of data used for calculation differed according to rainfall cases.
- **2DVD** : Z<sub>H</sub> calibration bias is affected by the precipitation system that passes over the 2DVD, and shows more variability compared to  $Z_{H}$ -K<sub>DP</sub> self-consistency method.
- $\succ$  **Z**<sub>DR</sub> calibration bias
- Z<sub>H</sub>-Z<sub>DR</sub> relationship method shows the smallest bias value compared to other methods because it uses the data of the microphysically stable section ( $Z_H$  : 10 ~ 20 dBZ)
- **Vertical pointing measurement**: there is a limitation that the  ${}^{1)}Z_{DR}$  bias can be calculated only when the rainfall system passes over the radar site, <sup>2)</sup>depending on the selection of rain regime under the melting layer. However, this method yields a stable bias during the precipitation passes over the radar site.