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Hamada et al. (2015) found that the overlap between systems with the most 4. REFLECTIVITY VS. RAIN RATE VS. MAXIMUM 40 DBZ HEIGHT 5. PIA, KDP, ZDR, AND HAIL FRACTION
extreme rain rates and those with the most extreme convective intensities using . . _ . .
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TRMM 2A25 V7 retrievals of attenuation-corrected Ku-band reflectivity and median 1.5 km reflectivity. Extreme rain rates occur median 1.5 km rain rate. TRMM rain rates are up to KDP slightly increases with max. 40 dBZ height for a given 1.5 km reflectivity, but
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variable reflectivity-rain rate (Z-R) retrievals. This research evaluates the validity most frequently for max. 40 dBZ heights of ~6 km, 70% lower than WSR-88D for max. 40 dBZ heights ZDIi{ significantly mcr.eases .wh?n max. 40.dB.Z.he|ght exceeds 5 km. Additionally,
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retrievals with WSR-88D retrievals over the Southeastern United States (SEUS) rain rates is “50% greate.r for WSR-88D tha.n.T.RMM. reflectl.wtles. .For a glven. 1.5 km reflectlwt.y, WSR- c.ollectclvely |nf:I|cz.at.e that 1..5 km particle sm? dl.s'.crlbutlons are likely unique for
with potential implications for global satellite retrievals of extreme rain rates. TRMM has greater median 1.5 km reflectivities for 88D rain rate increases with max 40 dBZ height, but situations of significant hail or graupel aloft signified by elevated 40 dBZ echoes.
all max. 40 dBZ height-rain rate combinations. the opposite is true for TRMM.
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maximum 40 dBZ echo height. TRMM path integrated attenuation (PIA), as well convectively intense situations may produce low biased near-surface TRMM
as WSR-88D differential reflectivity (ZDR), specific differential phase (KDP), and In the rightmost column above, 1.5 km rain rate-reflectivity joint histograms are filled with median max. 40 attenuation-corrected reflectivities and rain rates, while assumed Z-R
hail fraction (areal fraction of hail, graupel, and mixed hail/rain points from dBZ height. WSR-88D rain rates are more variable than TRMM for a given reflectivity, and TRMM max. 40 dBZ relationships may further increase rain rate low biases. Results have been
particle identification algorithm) are also explored. heights decrease as rain rate increases for a given 1.5 km reflectivity. WSR-88D exhibits the opposite pattern. submitted to the Journal of Applied Meteorology and Climatology.
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