

1.Introduction

A supercell passed 2 km north of the MRI (Meteorological Research Institute) and was observed by the MACS-POL (MRI advanced C-band solid state polarimetric radar). This storm had a wall cloud between the FFD (fore-flank downdraft) and RFD (rear-flank downdraft), and hook echoes in spite of non-tornadic supercell.

Tornado detections are already researched (e.g., low level ρ_{hv} signals), then we focused on the microphysics around MC (meso-cyclone), in terms of raindrops size and their movement to help understanding the signals as a stage before tornado development.

2.Radar specification

Frequency	5370 MHz (C-band)	C-band Z _{DR} characteristic	
Transmitters	GaAs Power FET (solid state)	10 C-band (30°C) C-band (20°C) C-band (10°C)	
Peak Power	3.5 kW	8 - S-band (00°C) 	
Antenna diameter	4 m (beam width 0.7°)	High Z _{DR}	
Antenna speed	4 rpm (max 10 rpm)	4 ~6mm	
Range gate spacing	150 m	2 Adachi et al. (2013)	
Transmitting mode	simultaneous	1 2 3 4 5 6 7 8 D _e [mm]	
PRF	624 / 780 Hz (EL<8°) 936 / 1	170 Hz (EL>=8°)	
Pulse width	$1 \ \mu s$ (R<20km), 129 μs (R>	>20km) (EL<8°)	
Scan sequence	4 min, RHI ×2, PPI ×13		
(0.5°, 1°, 1.5°, 2.1°, 2.8°, 3.6°, 4.8°, 0.5°, 6.8°, 8°, 10.4°, 14°, 18°)			

3.Environmental characteristics

SReH _{max} : 110 m ² s ⁻²	(Araki et al. 2015)
	*reanalysis data 18:00 JS

Typical non-tornadic Super cell (Thompson et al. 2003)

Acknowledgements

This study is partly supported by JSPS KAKENHI grant Number 15K05295.

hightarrow Precipitation microphysics of non-tornadic supercell near the radar site of MRI in Tsukuba, Japan. heakenNobuhiro Nagumo, A. Adachi, W. Mashiko, and H. Yamauchi

Meteorological Research Institute (MRI), Tsukuba, Japan, nagumo@mri-jma.go.jp

Appl. Meteor. Climatol, 52, 2849-570

1243-1261.

Thompson, et al., 2003: Close proximity soundings within supercell environments obtained from the Rapid Update Cycle. Wea. Forecasting, 18

and tornado occurrence from other tornadic(non-tornadic) events.