Microwave Remote Sensing Laboratory UMassAmherst

Detection and Identification of Remotely Piloted Aircraft Systems Using Weather Radar

Krzysztof Orzel¹ Siddhartan Govindasamy², Andrew Bennett² David Pepyne¹ and Stephen Frasier¹

- I. Univeristy of Massachusetts, Amherst, MA
- 2. Olin College of Engineering, Needham, MA

Motivation – UAV misuse

o rogue drones in airport vicinity

o espionage and data hacking

o terrorist drone threat

o fly contraband into prisons

Laws can be enforced only if the threat is detected!

Approach – micro-Doppler analysis

Mechanical vibrations or rotations of structures on a target may introduce frequency modulation on the radar return known as the micro-Doppler (m-D) phenomenon.

V. Chen, The Micro-Doppler Effect in Radar, Norwood MA: Artech House, 2011.

Relevant features for drone detection - theory

- Spectrum width
 - several meters per second for birds
 - much wider for drones
 - high sampling rates are necessary to avoid micro-Doppler signature aliasing
- Spectrogram symmetry
 - symmetric for drones
 - asymmetric for birds
- Spectrogram periodicity
 - determined by rotor rotation rate or wing beat
 - higher for drones
 - high sampling rates are necessary

Bird spectrogram

Drone spectrogram (copter-type)

R. I. A. Harmanny et al, *Radar Micro-Doppler Feature Extraction Using the Spectrogram and the Cepstrogram*, in Proceedings of the 11th European Radar Conference, 2014

Experiment setup

- o range gate resolution 24 meters
- drone to radar distance ~ 400 meters

 drone (hexacopter) hovered or flew in circles within a single radar range gate

high-power, dual-polarized radar
 with a fixed antenna (10 degree
 elevation tilt) and PRF = 1kHz

Drone observations

- high standard deviation in differential channel power
- correlation coefficient
 larger than 0.8 when drone
 is within a beam

- no significant difference in spectrograms for H- and Vpolarizations
 - multiple peaks in
 spectrogram due to low
 sampling frequency and
 multiple rotors

Drone statistics

- o statistics represent 80 seconds of a hovering drone dataset
- o on average 3+ peaks in spectrum are detected
- o main peak significantly stronger when compared with secondary spectrum peaks

Bird observations

- o even number of peaks in spectrogram
- o comparable power in peaks
- o spectrum width of multiple birds can be comparable to drone

Birds statistics

o statistics represent 12 different bird(s) observation (~50 seconds)

- o on average 2 comparable peaks in spectrum are detected
- o positive Zdr with narrower distribution when compared to drone

Support vector machine classifier (drone vs. bird)

- o commonly used for a binary classification
- attempts to find a hyperplane that divides the two classes with the largest margin in a high-dimensional feature space
- uses a subset of training points in the decision function (called support vectors) and is memory efficient

Classifier performance

- up to 80 seconds of hovering drone observations and 50 seconds of bird observations used to train the SVM classifier using the means and standard deviations of the 4 features – number of spectral peaks, standard deviation of first two peaks, correlation coefficient, and differential phase
- o 80 seconds dataset representing maneuvering drone was used for classifier evaluation
- o visible trend in correct classification as the size of the training set is increased

Conclusions

- weather radar can detect and identify a remotely piloted aircraft system, but high sampling rates are recommended to avoid micro-Doppler signature aliasing
- Micro-Doppler signature is the most distinctive feature to distinguish drones from birds
- machine learning can be used to distinguish birds from drones, but more data (of drones and birds) is needed to improve classifier performance
- o additional features and machine learning algorithms need to be evaluated

Future work

- UMass received an NSF grant to demonstrate the drone detection and tracking capabilities of its weather radars
- experiments scheduled for Fall'17 using a phase-spin weather radar
- this radar scans electronically in the elevation plane and move mechanically in the azimuth
- <image>
- capable of scanning the entire sky (volume scans)

10					10 million to the lot		
0		AND LOC INCOMENTS			AN LOUR DANS AND		
10				17.34	The second second second	Personal contraction of the	12
	0 5	10	15	20	25	30	

drone signature detected at 1180m using a solid-state low-power radar

Thank You!

Questions?