Detection and Identification of Remotely Piloted Aircraft Systems Using Weather Radar

Krzysztof Orzel1
Siddhartan Govindasamy2, Andrew Bennett2
David Pepyne1 and Stephen Frasier1

1. Univeristy of Massachusetts, Amherst, MA
2. Olin College of Engineering, Needham, MA
Motivation – UAV misuse

- rogue drones in airport vicinity
- espionage and data hacking
- fly contraband into prisons
- terrorist drone threat

Laws can be enforced only if the threat is detected!
Approach – micro-Doppler analysis

Mechanical vibrations or rotations of structures on a target may introduce frequency modulation on the radar return known as the micro-Doppler (m-D) phenomenon.

Relevant features for drone detection - theory

- **Spectrum width**
 - several meters per second for birds
 - much wider for drones
 - high sampling rates are necessary to avoid micro-Doppler signature aliasing

- **Spectrogram symmetry**
 - symmetric for drones
 - asymmetric for birds

- **Spectrogram periodicity**
 - determined by rotor rotation rate or wing beat
 - higher for drones
 - high sampling rates are necessary

Experiment setup

- beam azimuthal resolution at the drone location \(\sim 8 \) meters
- range gate resolution – 24 meters
- drone to radar distance \(\sim 400 \) meters

- drone (hexacopter) hovered or flew in circles within a single radar range gate
- high-power, dual-polarized radar with a fixed antenna (10 degree elevation tilt) and PRF = 1kHz
Drone observations

- High standard deviation in differential channel power
- Correlation coefficient larger than 0.8 when drone is within a beam
- No significant difference in spectrograms for H- and V-polarizations
- Multiple peaks in spectrogram due to low sampling frequency and multiple rotors
Drone statistics

- Statistics represent 80 seconds of a hovering drone dataset.
- On average 3+ peaks in spectrum are detected.
- Main peak significantly stronger when compared with secondary spectrum peaks.
Bird observations

- even number of peaks in spectrogram
- comparable power in peaks
- spectrum width of multiple birds can be comparable to drone
Birds statistics

- Statistics represent 12 different bird(s) observation (~50 seconds)
- On average 2 comparable peaks in spectrum are detected
- Positive Zdr with narrower distribution when compared to drone
Support vector machine classifier (drone vs. bird)

- commonly used for a binary classification
- attempts to find a hyperplane that divides the two classes with the largest margin in a high-dimensional feature space
- uses a subset of training points in the decision function (called support vectors) and is memory efficient
Classifier performance

- up to 80 seconds of hovering drone observations and 50 seconds of bird observations used to train the SVM classifier using the means and standard deviations of the 4 features – number of spectral peaks, standard deviation of first two peaks, correlation coefficient, and differential phase

- 80 seconds dataset representing maneuvering drone was used for classifier evaluation

- visible trend in correct classification as the size of the training set is increased
Conclusions

- Weather radar can detect and identify a remotely piloted aircraft system, but high sampling rates are recommended to avoid micro-Doppler signature aliasing.

- Micro-Doppler signature is the most distinctive feature to distinguish drones from birds.

- Machine learning can be used to distinguish birds from drones, but more data (of drones and birds) is needed to improve classifier performance.

- Additional features and machine learning algorithms need to be evaluated.
Future work

- UMass received an NSF grant to demonstrate the drone detection and tracking capabilities of its weather radars

- experiments scheduled for Fall’17 using a phase-spin weather radar

- this radar scans electronically in the elevation plane and move mechanically in the azimuth

- capable of scanning the entire sky (volume scans)

 drone signature detected at 1180m using a solid-state low-power radar
Thank You!

Questions?