# Attenuation and Radar Reflectivity in Melting Layer measured with Ground-based Ka-band Radars

BY Yuki Kaneko1\*, Kinji Furukawa1, Riko Oki1, Katsuhiro Nakagawa2, Kenji Nakamura 1) The Space Technology Directorate I, JAXA, Tsukuba, Japan 2) The Applied Electromagnetic Research Institute, NICT, Koganei, Japan 3) Department of Economics, Dokkyo University, Saitama, Japan

Abstract: Estimation method of specific attenuation and equivalent radar reflectivity in a melting layer using a dual Ka-band radar system is studied. The system consists of two identically designed Ka-radars. When a precipitation system comes between two radars, the radars observe the system with opposite directions. The radar applies FM-CW type and designed for the measurement of the scattering characteristics of precipitation echoes suffer from rain attenuation. The reduction due to rain attenuation symmetrically appears in both radar echoes. By differentiating averaged measured radar reflectivity with range, the specific attenuation can be estimated. After obtaining the specific attenuation, equivalent radar reflectivity is estimated. In the melting layer, specific attenuation and the equivalent radar reflectivity vary largely along the radio path, and the estimated specific attenuation is very sensitive to the setup configuration of the experiment. The accuracy of the estimated specific attenuation is found to depend on the curvature of the equivalent radar reflectivity with respect to range and the distance for the differentiation. The measurement system and actual procedure of data analysis are also described.

# Observation



\*: Three G-PIMMS, abbreviation for "Ground-based Particle Image and Mass Measurement System", which was newly developed for this experiment by Dr.Suzuki, Yamaguchi University



### Conclusion

This unique measurement using two same wavelength radars viewing a same precipitation volume from opposite viewing angles shows the radar reflectivity(Ze) and attenuation(k) with reduced uncertainty. The k-Ze relationships of rain, melting layer, and snow were successfully measured. The method of the dual radar sensitivity collection was developed. This result will make it possible to study the connection between the microphysical characteristics of the hydrometeor and the measureble quantity by radar observation.

### The geolocation of the observation sites.

# Calibration and Correction of Zm

Even though the system parameters are well specified, calibration is required. Actually, our Ka-radar was found unstable, particularly, in cold season. Zm was adjusted by radar disdrometer, which is a commercial one colled Parsivel, and dual total path attenuation. Using the dropsize distribution from Parsivel which is located only a few tens meter away from the radar, equivalent radar reflectivity at Ka-band is calculated and compared with Ka-radar measurement. Only rain cases are used, because radar reflectivity of rain is much more stable than snow.

- 1. Estimation of bias of Ka #1 : calculating Ze, including Mie scattering effect, from measured DSD by Parsivel and making comparison with Zm(#1) then the bias of SN1 is obtained.
- 2. The total attenuation along the beam should be the same between Ka#1 and Ka#2. Ka#1 has been adjusted by Parsivel so the discrepancy of SN1 vs SN2 should owe to the bias of SN2.
- 3. Validating the obtained k-Ze datasets of Ka-radar by k-Ze relationship of Parsivel.



Comparison of radar reflectivity from DKR and Parsivel data on 26 Nov. 2013. Upper curve is from DKR and lower is from Parsivel. Curve from DKR is biased with 40 dB to avoid overlapping of the two curves. (Prof. Nakamura)

It should be noted that the radar calibration is required for equivalent radar reflectivity measurement, but not for specific attenuation measurement, since only relative variation in range is used in the specific attenuation measurement.



Scattergram of the radar reflectivity derived from DKR and Parsivel data. Left is with Mie scattering calculation in Parsivel data, and right is with Rayleigh scattering calculation. The data at -10 dBZ in Parsivel represent non-available data. (Prof. Nakamura)

## Experimental Results

The case of dual-radar observation through melting layer is in total about 54 hours. The method is still developing, however, the preliminary results indicate the characteristic behaviors of k-Ze relationship depends on the position of the melting layer, that is, the state of the melting particles.



## Discussion

# each cases are fitted as $k=\alpha Ze^{\beta}$ .



### Comparison of a and B between TRMM/PR Algorithm and Ground measurement

Region categorize in TRMM PR.



### References

lauchi, T., Kozu, T., Meneghini, R., Awaka, J., & the TRMM precipitation radar. Journal of Applie Liu, G., "Approximation of single scattering prop frequencies," *J. Atmos. Sci.*, vol. 61,pp. 2441-24 Liu, G., "Database of microwave single-scatteri Amer. Meteorol. Soc., vol. 89, pp. 1563-1570. 2 H. Ishimoto., K. Masuda, Y. Mano, N. Orikasa, a in optical modeling of convectively generated ice 113,pp. 632-643, 2012.

M. Nishikawa, K. Nakamura, Y. Fujiyoshi, K. Nak Kumakura, and R. Oki, "Radar attenuationand r radar,"IEEE Trans. Geosci. Remote Sens., vol. 5



As the height of melting layer decreases from 400m high to below 300m high during 30 minutes. <sup>\*</sup> Those two figures show the peak of k

appear higher than peak of Ze.

the variation of k-Ze. Both k and Ze in minor area(A) is above the melting layer where the particle is solid. As the ratio of number of melting particle and melting ratio in a particle itself increases, the k and Ze are also increasing(B). After going over a peak of k, Ze is almost constant but the k rapidly decline (C) and it will conform to the k-Ze relationship of rain of DSD at the ground at the

Regions in the melting layer is categorized by Ze profile and k and Ze in same region in

| ., (iguchi, 2000)                                 | α                                           | ß                              | There is large disparity on the value                                                                                                                                      |  |
|---------------------------------------------------|---------------------------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Snow at A                                         | 0.0000861                                   | 0.79230                        | of α and β, even though the<br>frequency difference between PR<br>and Dual Ka-radar is considered.<br>Now this disparity is discussioned.                                  |  |
| Snow (A-B)                                        | 0.0775                                      | 0.388                          |                                                                                                                                                                            |  |
| Melting at B                                      | 0.0001084                                   | 0,79230                        |                                                                                                                                                                            |  |
| Upper BB (B-C)                                    | 0.0153                                      | 0.697                          |                                                                                                                                                                            |  |
| Peak at C                                         | 0.0004142                                   | 0.79230                        |                                                                                                                                                                            |  |
| 0°C water at D                                    | 0.0002822                                   | 0.79230                        |                                                                                                                                                                            |  |
| Rain(D-E)                                         | 0.00393                                     | 0.772                          |                                                                                                                                                                            |  |
| n at E by Persivel                                | 0.000849                                    | 0.971                          |                                                                                                                                                                            |  |
| Cf.: Okinawa-Nagaoka                              | a, rain cases: α                            | =0.00439, β=0.7                | 707                                                                                                                                                                        |  |
|                                                   | - 5                                         |                                |                                                                                                                                                                            |  |
|                                                   |                                             |                                |                                                                                                                                                                            |  |
|                                                   |                                             |                                |                                                                                                                                                                            |  |
| Dkamoto, K. I. (2000). Rain-p                     | profiling algorithm fo                      | or T. Yokoyar                  | na, and H. Tanaka, "Microphysical processes of meltingsnowflakes detected by two-                                                                                          |  |
| Meteorology, 39(12), 2038-2                       | 2052.                                       | wavelengt                      | n radar Part II. Application oftwo-wavelength radar technique," J. Meteorol. Soc. Japan, vol.                                                                              |  |
| 56. 2004.                                         | s for high microway                         | e 63, 10. 4,p<br>R. Misumi.    | p. 666-676, 1964.<br>H. Motovoshi, S. Yamaguchi, S. Nakai, M. Ishizaka, andY. Fujivoshi, "Empirical                                                                        |  |
| properties for nonspherical                       | ice particles," Bull.                       | relationshi                    | ps for estimating liquid water fraction of melting snowflakes," J. Appl. Meteor. Climatol., vol.                                                                           |  |
| 08.                                               |                                             | 53, no. 10,                    | pp. 2232-2245, Oct. 2014.                                                                                                                                                  |  |
| Id A. Uchiyama, "Irregulariy s                    | snaped ice aggrega<br>ctr. Rad. Trans. vol. | tes L. LI, S. M.<br>Li A Huffr | Sekeisky, S. C. Reising, C. I. Swift, S. L. Durden, and G. A. Sadowy, S. J. Dinardo, F. K.<br>nan, G. Stephens, D.M. Babb, and H. W. Rosenberger "Retrieval of atmospheric |  |
|                                                   |                                             | attenuatior                    | n using combined ground-based and airborne 95-GHz cloud radar measurements," J.                                                                                            |  |
| agawa, H. Hanado, H. Minda, S. Nakai, T. Atmos. O |                                             |                                | eanic Technol., vol. 18, no. 8, pp. 1345-1353,Aug. 2001.                                                                                                                   |  |
| flectivity measurements of si                     | now with dual Ka-ba                         | and                            |                                                                                                                                                                            |  |