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ABSTRACT 
 

The current implementation of the Hydrometeor Classification Algorithm (HCA) on the WSR-88D network contains two non-hydrometeor-
based classes: ground clutter/anomalous propagation and biologicals.  A number of commonly observed non-hydrometeor-based 
phenomena do not fall into either of these two HCA categories, but often are misclassified as ground clutter, biologicals, unknown, or worse 
yet, weather hydrometeors.  Some of these phenomena include chaff, sea clutter, combustion debris and smoke, and radio frequency 
interference.  In order to address this discrepancy, a new class (nominally named “inanimate”) is being developed that encompasses many 
of these targets.  Using this class, a distinction between non-biological and biological non-hydrometeor targets can be made and potentially 
separated into sub-classes for more direct identification.  A discussion regarding the fuzzy logic membership functions, optimization of 
membership weights, and class restrictions is presented, with a focus on observations of highly stochastic differential phase estimates in all 
of the aforementioned targets.  Recent attempts to separate the results into sub-classes using a support vector machine are presented, and 
examples of each target type are detailed.  Details concerning eventual implementation into the WSR-88D radar product generator are 
addressed. 
 

_____________ 

1. Introduction 

The operational Hydrometeor Classification Algorithm (HCA) 
on the WSR-88D network serves as a tool for radar users to 
discriminate between different types of hydrometeors (Park et al. 
2009).  Radar users can differentiate among frozen and liquid 
hydrometeors, ground clutter, and biological targets.  The HCA is 
useful for determining where mixed precipitation may be 
occurring (a melting layer or rain/snow line), if large/giant hail is 
occurring in a severe thunderstorm, and if targets above the 
melting layer consist of mainly dry/wet snow or ice crystals.  The 
HCA was not designed to isolate mixed-phase conditions and only 
reports a single class per range bin. 

The HCA was developed through years of experimentation 
(Ryzhkov et al. 2005) and theoretical analysis (Bringi and 
Chandrasekar 2005).  It makes use of the polarimetric estimates 
available from the WSR-88D (Crum and Alberty 1993; Doviak et 
al. 2000), including differential reflectivity (ZDR), cross-correlation 

coefficient (ρHV), and differential phase (ΦDP).  Through the use of 
a fuzzy logic algorithm, trapezoidal membership functions for 
different variables are combined with weights and quality vectors 
in order to determine the most likely target type.  These 
membership functions and weights were derived using a myriad of 
techniques, with significant input coming from the Joint 
Polarization Experiment (JPOLE; Ryzhkov et al. 2005). 

Currently, there are three non-hydrometeor classifications 
possible in the operational HCA: ground clutter/anomalous 
propagation, biologicals, and unknown (for no decision from the 
HCA).  The unknown category is selected when the aggregation of 
membership functions does not reach a critical threshold for 
defining a single target type.  An additional non-hydrometeor 
class, tornadic debris, is also currently being added to the HCA 
and will be available in the next year (Snyder and Ryzhkov 2015).  
However, there are numerous target types that don’t fall into the 
ground clutter, biological, or tornadic debris classes that are 
commonly placed into these categories due to the lack of any other 
option.  Some of these targets include military chaff, sea clutter, 
and combustion debris/smoke, as well as the occurrence of radio 
frequency interference (RFI). 

The purpose of this paper is to detail the development of a 
new, singular “inanimate” class for the operational WSR-88D 
HCA that incorporates these four target types.  These targets don’t 
readily fall into ground clutter or biologicals, so it is sensible to 
include an additional class that separates them from these types of 
targets.  Doing so would mitigate some of the false alarms of 
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existing classifications brought on by misclassification of these 
four other non-hydrometeor phenomena. 
 
 
2. Target Types and Characteristics 
 
 Military chaff has been utilized as a radar countermeasure 
around the world since World War II (De Martino 2012).  Due to 
its metallic coating and lengths cut specifically to resonate at a 
given incident frequency of electromagnetic energy (Hessemer 
1961; Palermo and Bauer 1965), chaff can generate substantial 
radar cross sections that disperse into large “clouds” of distributed 
targets (Pinson 1975; Harrison and Heinz 1963; Zrnić and 
Ryzhkov 2004; Fig. 1).  These targets simulate broad returns to an 
enemy radar system, leading to the potential for masking aircraft, 
warships, and missiles from enemy detection (Pode 1960). 
 

  
FIG 1: Bands of chaff (horizontal trails) in the reflectivity 

factor estimate on 12 February 2016 at the KBYX WSR-88D. 
 

The utility and effectiveness of chaff has led to widespread use 
not only in the battlefield, but, logically, also as a training tool in 
the United States and abroad.  Due to its prevalence in training 
exercises, evidence of chaff can often be found in radar returns 
across the national airspace in day-to-day aviation operations.   

Sea clutter is similar to ground clutter in that it is evident 
during super-refraction conditions when the beam is bent towards 
the surface due to high refractivity gradients (Chan 1990).  Unlike 
ground clutter, which can often be filtered using a notch filter at 
zero Doppler velocity (or other techniques; e.g., Torres and Zrnić 
1999; Torres and Warde 2014), sea clutter has a non-zero Doppler 
component, resulting in considerable difficulty for filtering.  For 
this reason, sea clutter is a tremendous contamination source for 
many types of radar systems. 

Combustion debris and smoke result from surface-based fires, 
and can rise to exceptional levels above the ground (Melnikov et 
al. 2008; Jones and Christopher 2010).  Ash consists of relatively 
large, reflective particles that resonate at the WSR-88D 
wavelength.  Grass/brush fires, urban fires, and large wildfires are 
all sources of combustion debris that can reach the height of the 

radar beam if the boundary layer characteristics and range to the 
radar are ideal.  As with chaff and sea clutter, smoke is generally 
considered a nuisance to forecasters, air traffic controllers, and 
automated algorithms, and can appear in a similar fashion to 
weather, leading to the desire to accurately identify its presence. 

RFI is caused by interference from other transmitting sources 
in a radar’s transmit/receive band, and is a source of clutter for 
virtually every type of radar (Miller et al. 1997; Cho 2017).  When 
another transmitter operates at sufficient power to be received by a 
weather radar, numerous types of RFI can result.  The most 
common type of RFI appears along a subset of radials and is due 
to a mismatched pulse-repetition frequency (PRF) between the 
weather radar and the other transmission source.  At times, RFI 
can affect large portions of a weather radar scanning volume, 
causing significant contamination issues. 

Each of these phenomena is characterized by similar 
appearances in radar variable estimates.  While reflectivity factor 
(Z) and radial velocity (vr) can vary widely between these four, 
spectrum width (W) and the polarimetric variables (ZDR, ρHV, and 
ΦDP) have considerable similarities.  In general, spectrum width (a 
rough measure of turbulence based on the distribution of radial 
velocities) is low in these targets (below 3 m s-1).  ZDR can span the 
entire range of potential values (-7.9 to +7.9 dB), a characteristic 
that does not match most targets. 

As would be expected for non-hydrometeor targets, ρHV is 
generally low (between 0.2 and 0.8), but can still approach 1.0 at 
times.  Finally, ΦDP serves as potentially the most defining 
characteristic of these four phenomena, consisting of very high 
values (between 80-360 degrees) and a relatively high standard 
deviation (i.e., a “noisy” estimate field).  The current HCA tends 
to label the targets of interest below the melting layer as 
biologicals, big drops, and unknown categories, and dry snow, ice 
crystals, and unknown within and above the melting layer (see Fig. 
2 for an example in chaff).  The proposed “inanimate” class would 
rectify much of those false alarm misclassifications. 

 

 
FIG 2: Current HCA output during a chaff release on 

12 February 2016 at the KBYX WSR-88D. 
 
 

3. The Hydrometeor Classification Algorithm 
 

The HCA utilizes the concept of fuzzy logic to determine the 
most likely target type based on a series of approximate 
distributions and weights of different variables collected from 
radar estimates.  A quality vector is also applied to determine the 
reliability of each estimate ingested into the algorithm.  In the 
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WSR-88D implementation, Park et al. (2009) describe the 
distributions and weights for the six variables that are either 
directly estimated variables or derived parameters: 

 
• Reflectivity Factor 
• Differential Reflectivity 
• Cross-Correlation Coefficient 
• A Linearized Version of Specific Differential Phase 
• Standard Deviation of Reflectivity Factor 
• Standard Deviation of Differential Phase 

 
Distributions of the six variables were determined for 10 different 
target types: 
 

• Ground Clutter/Anomalous Propagation (GC/AP) 
• Biological Scatterers (BI) 
• Dry Snow (DS) 
• Wet Snow (WS) 
• Ice Crystals (IC) 
• Graupel (GR) 
• Big Drops (BD) 
• Rain (RA) 
• Heavy Rain (HR) 
• Rain/Hail Mixture (HA) 

 
These distributions were simplified as non-symmetric trapezoidal 
functions in either one or two dimensions, convolved with 
appropriate data quality vectors, related to the altitude of the 
melting layer, and appropriately weighted to determine the most 
likely target type for a radar pulse resolution volume. 

The HCA method provides a statistical analysis tool to radar 
users that allows for rapid interpretation of the most likely target 

by combining much of the available information into a single 
product.  This is especially useful for users who are not as familiar 
with the intricacies of the dual-polarimetric estimates and desire an 
easy-to-understand product.  The method also provides 
opportunity for growth into additional target types that have 
distributions that differentiate them from the existing categories. 

The flow of the HCA algorithm is shown in Fig. 3 below.  
Each of the six variables (shown in blue) has a membership 
function for each of the 10 target types.  Each of these 
membership functions, ranging from 0 to 1, is multiplied by a 
corresponding weight (in green) for the variable and target type, as 
well as a quality vector (in red) for each variable.  These values 
are divided by a summation of the weight and quality vector for 
normalization according to: 

                
 
where A is the aggregate score, W is the weight, Q is the quality 
vector, and P is the membership function of the variable V.  The 
index j loops across the six variables, while the index i loops 
across the 10 target types.  In order to design a new class, the 
membership functions and weights must be determined for the six 
variables such that the new class is reported properly and the 
existing classes are not improperly changed. 

 

4. Methodology 

Of key importance to this study is the collection of large 
datasets in order to provide enough variety to accurately determine 
the distributions of radar variables in the inanimate targets.  Over 
the course of 15 months, WSR-88D data from nearly 500 

FIG 3: HCA fuzzy logic flow diagram.  Membership functions are weighted and convolved with quality vectors 
before being aggregated to determine the most likely classification. 
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inanimate cases across the United States were collected.  This 
dataset includes over 2,000 different cells of inanimate targets.  
 Despite the existence of inanimate scatterers in a radar 
volume, there are often additional targets such as weather, 
biological scatterers, and/or clutter.  Therefore, the inanimate 
returns must be manually separated from the non-chaff returns 
through the use of human truthing.  A human-truthing tool 
originally developed for chaff (Kurdzo et al. 2017) was used to 
identify cells of inanimate and non-inanimate targets.  The tool 
consists of a simple click-based interface for the user to mark 
whether a cell or cluster is inanimate or non-inanimate.  An 
example of a chaff case is shown in Fig. 4.  A subject matter 
expert uses all of the available information (i.e., radar variables) to 
make a decision as to the type of target being observed.  After a 
volume analysis is completed, all of the data associated with 
inanimates and non-inanimates are stored in a database for future 
processing. 
 

 
FIG 4: A human-truthing tool for marking chaff and non-chaff was 

adapted for inanimate cells for this study. 
 
The collection of inanimate cases allows for generation of 

histogram distributions of the new inanimate class, displaying the 
typical range of values of the relevant variables (shown in Fig. 5).  
Note that specific differential phase (KDP) is not shown in Fig. 5 
since KDP is not calculated when ρHV is low, making it irrelevant 
for this class.  In general, Z and ZDR span wide ranges, while ρHV is 

exceptionally low, the texture field of ΦDP is exceptionally high, 
and the texture field of Z is in line with most other targets. 

Although these distributions are an accurate portrayal of the 
variables in inanimate targets, the membership functions in the 
HCA take the form of simple, non-symmetric trapezoidal 
functions.  Therefore, these functions serve as a starting point for 
approximate trapezoidal functions that can be input into an 
optimization algorithm for tuning (Fig. 6).  Additionally, no 
weights have been developed for this new class, so values between 
0 and 1 at a resolution of 0.1 are added to the optimization 
framework.  

 

 
FIG 5: Example distributions of Z, ZDR, ρHV, and standard deviation 

of Z and ϕDP in inanimate cases across the United States. 
 
The optimization scheme chosen is a genetic algorithm, which 

operates on the theory of evolution.  An initial population 
consisting of at least 30 degrees of freedom (30 variables, 
including 4 for each of the 6 membership functions and 6 weight 
values, plus any additional restrictions) is fed to the algorithm and 
a fitness function is calculated using a standard critical success 
index.  The number of fitness function solutions is based on the 
population size, resulting in a series of scores.  The best 

FIG 6: Genetic algorithm flow diagram.  The initial population is used to calculate a fitness function value, which is compared with other members of the 
population.  If recent improvement is evident, the population is mutated and the process repeats.  A lack of recent change signals completion. 
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combination is taken, and the score is compared to the previous 
generation.  If the score has improved, the two best populations 
are selected.  Their bits are randomly changed (mimicking 
mutation in the evolutionary process), and new combinations are 
made (offspring) in order to define a new population for the 
succeeding generation.  This process continues until the fitness 
score has “stalled” for a set number of generations, indicating the 
end of the optimization process. 

The goal of the optimization is to maximize the probability of 
detection for inanimate targets and minimize the false alarm and 
missed detection rates (i.e., the total number of misclassifications).  
This is particularly important in the desire to preserve existing 
classifications that are not inanimate targets.  The resulting 24 
variables that define the membership trapezoids and 6 variables 
that define the weights are then used as the basis for a new class in 
the HCA (along with any additional parameters), which can be 
tested relative to previous results. 

In addition to the 30 “required” variables, a series of additional 
parameters are included in the optimization.  As described in Park 
et al. (2009), each class has a set of restrictions that disallow their 
selection under certain circumstances.  For example, the ground 
clutter class is not allowed when the absolute value of radial 
velocity is greater than 1 m s-1, and the ice crystal class is not 
allowed when the reflectivity factor is greater than 40 dBZ.  A 
number of possible restrictions were explored for the inanimate 
class; the chosen fields for restrictions were radial velocity, 
spectrum width, and the standard deviation (texture field) of ΦDP.  
In general, if the radial velocity was too low, ground clutter would 
sometimes be classified as inanimate.  If spectrum width was too 
high, biologicals were often classified as inanimate.  Finally, if the 
standard deviation of ΦDP was too low, general misclassifications 
took place.  Therefore, these three parameters were included in the 
optimization scheme, resulting in a total of 33 degrees of freedom. 
 

FIG 7: Four case example outputs from the altered HCA with the inanimate classification included.  From the top left, clockwise: Chaff at KBYX on 12 
February 2016; Sea clutter at KLGX on 16 May 2012; RFI at KHGX on 23 February 2017; and smoke at KVNX on 23 March 2016. 
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5. Results 
 

The new inanimate classification has been integrated into the 
existing HCA using an Open Radar Product Generator (ORPG) 
simulator (Kurdzo et al. 2017).  With this tool, any existing Level-
II WSR-88D data in the dual-polarimetric era can be ingested and 
processed with existing and/or modified versions of the current 
ORPG algorithms.  Hundreds of cases have been tested across 
multiple atmospheric conditions, target types, and locations.  One 
example for each target type in the inanimate class (chaff, sea 
clutter, smoke, and RFI) is presented in Fig. 7. 

The chaff case features multiple horizontally oriented linear 
segments that originally appeared as mostly biologicals and big 
drops in the current HCA.  Although a non-trivial number of big 
drop classifications remain, a significant portion of the chaff 
clouds is labeled as inanimate in the modified HCA.  Above the 
melting layer, some areas of dry snow also remain.  Some 
unknown classifications exist in areas of low signal-to-noise ratio 
(SNR), especially along the edges of the chaff.  The clutter near 
the radar is not detected as inanimate.  Some swaths of biological 
detections also remain. 

The sea clutter case is from the Langley Hill, WA (KLGX) 
WSR-88D, where the 0.2º elevation angle makes sea clutter a 
common occurrence.  In many of these cases, sea clutter can 
completely contaminate the western half of the volume at low 
elevations.  In this particular example, much of the sea clutter has 
been classified as inanimate, but some areas remain classified as 
biologicals due to anomalously high spectrum widths (>5 m s-1).  
This is sometimes an issue due to the optimized spectrum width 
restriction of 2.9 m s-1, but this threshold is necessary for 
preventiong false alarms in ground clutter. 

The example of combustion debris is from a series of large 
grass fires in northern Oklahoma and southern Kansas.  The two 
discernible smoke plumes were classified as mostly big drops and 
unknown classes prior to the inanimate addition, primarily due to 
the size of ash particles.  Large areas have been filled in with the 
inanimate designation.  Most of the ground clutter and biological 
bloom areas are left untouched. 

Finally, the RFI case includes multiple radials of interference 
that feature high and noisy ΦDP estimates.  These areas are clearly 
marked as inanimate classifications, although the mixture of RFI 
and ducting causes some areas of the clutter bloom to be classified 
as inanimate.  It is important to note that not all types of RFI 
display the characteristics defined in the inanimate class, so not all 
RFI cases will be properly detected.  This is, in part, due to the fact 
that some RFI situations look similar to rainfall (due to low values 
of ΦDP), and attempting to include these cases would likely lead to 
higher false alarm rates for the inanimate class. 

 
 

6. Conclusions and Upcoming Work 
 

Multiple non-hydrometeor target types that routinely 
contaminate the WSR-88D returns are misclassified in the current 
implementation of the HCA because no suitable class is available 

for them.  For this reason, an inanimate class has been developed 
for the operational WSR-88D HCA.  This class incorporates chaff, 
sea clutter, combustion debris, and some forms of RFI.  
Preliminary results show promise for the inanimate class’ 
performance, although statistical measures of probability of 
detection, probability of false alarm, and missed detection rates 
will be critical tools in quantifying overall performance. 

 

 
FIG 8: Sample classification between chaff and sea clutter. 

 
Additionally, the National Weather Service and the Federal 

Aviation Administration have expressed interest the ability to 
further delineate between the inanimate target types in the form of 
subclasses.  For example, the ability to differentiate between sea 
clutter and chaff would potentially be useful for both agencies, and 
such an algorithm could be implemented in various ways.  A 
preliminary look at ongoing work in this area at MIT Lincoln 
Laboratory is presented in Fig. 8.  A support vector machine 
technique is used as a classifier between chaff and sea clutter.  A 
series of 125 features is used to determine the classification, with 
features ranging from median, mean, and percentile values of 
different variables to shapes and edge detection algorithms for 
clusters of cells.  These results are promising for the future and 
will continue to be explored. 
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