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1. Introduction 
 
Very short term (0~3 hours) radar based quantitative 
precipitation forecasting (QPF), also known as 
nowcasting, plays an important role in flood warning 
and other hydrological applications. Three major 
categories of techniques have been developed during 
the past half century: conceptual models of convection 
initiation and dissipation, explicit numerical prediction 
of thunderstorms, or the extrapolation of the most 
recent observations (Wilson et al. 1998, Wilson 2003).    
 
Radar based QPF approaches predict storm motions 
through extrapolating the radar observation patterns 
into the future. Precipitation motion field, which plays 
the critical role in radar based QPF, can be derived with 
either pattern matching approaches or centroid 
tracking approaches. In pattern matching approaches, 
the motions of an entire field or its components are 
established through some forms of cross correlation 
(e.g. Rinehart and Garvey 1978; Rinehart 1981; Bellon 
and Austin 1984; Li et al. 1995). The extrapolation 
using precipitation motion field derived from cross 
correlation or NWP model winds is considered as the 
optimum method for nowcasting widespread and 
persistent rains (Ryall and Conway 1994; Pierce et al. 
2004). On the other hand, the centroid tracking 
approach derives a motion vector through tracking the 
temporal sequence of observed radar image’s centroid 
positions (e.g. Austin and Bellon 1982; Rosenfeld 
1987; Dixon and Wiener 1993, Johnson et. al. 1998, 
Lakshmanan and Smith 2009).  The centroid tracking 
based nowcasting approaches are well suited to the 
prediction of convection and its associated severe 
weather such as damaging winds, hails, tornadoes, 
and etc., but not well developed for the surface 
precipitation prediction (Pierce et al. 2004). This work 
aims at developing and testing a novel radar based 
QPF approach that combines the centroid tracking 
approach and the rapid refresh (RAP) model for the  
 
 
 
*Corresponding author address: Yadong Wang, 
Electrical and Computer Engineering Department, 
Southern Illinois University Edwardsville, Edwardsville, 
IL.  
 e-mail: yadwang@siue.edu 

 
surface precipitation prediction. Moreover, the 
variations of the precipitation properties, such as the 
precipitation cell size, total water content, and 
precipitation intensity are also incorporated into the 
prediction. This paper is organized as follows. In 
section 2, the method for the storm tracking and 
prediction is introduced. The performance of the 
proposed approach is discussed in section 3, and 
summary and conclusion are given in section 4.  
 
 
 
2. Methodology 
 

 
 
Figure 1. The flow char of the proposed radar based 

QPF approach. 
 
 
The flow chart of the proposed radar based QPF 
approach is shown in Fig. 1. The inputs to the algorithm 
are the polarimetric radar variables of reflectivity (Z), 
differential reflectivity (ZDR), and differential phase 
(𝜙"#) from four continuous moments (T, T-1, T-2 and 
T-3). The time interval of this work is 10 minutes. The 
wind field from the Rapid Refresh (RAP), an hourly 



updated assimilation and model forecast system 
operated by National Centers for Environmental 
Prediction (NCEP), is another input to this algorithm. 
The output is the predicted rainfall rate in the unit of mm 
hr-1. 
 
The radar data is first processed with a physically 
based radar data quality control approach to eliminate 
the interference from clutters and other 
nonprecipitation radar echo (Tang et al. 2014). The 
processed the radar data (Z, ZDR, and KDP) is then used 
to estimate the rainfall rate based on the hydrometeors 
classification result (Giangrande and Ryzhkov, 2008). 
An example of the reflectivity before (A) and after (B) 
quality control procedure, and estimated rainfall rate (C) 
is shown in Fig. 2.  
 

 
Figure 2. The raw reflectivity (A), quality controlled 

reflectivity (B), estimated rainfall rate (C).  
 
The obtained rainfall rates from individual radar are 
then mosaicked using the approach proposed by 
Zhang et al. (2016). An example of the mosaicked 
rainfall rate is shown in Fig. 3. In this example, the 
rainfall rate from 17 radars in Texas and Oklahoma are 
mosaicked, which covers the area of:  25 N ~ 40 N in 
latitude, and 110 ~ 90 W in longitude. The spatial and 
temporal resolution for the mosaicked rainfall rate is 1 
km-by-1 km, and 10 minutes, respectively.  
 
2.1 Precipitation motion field derivation 
 
2.1.1 Motion field from centroid tracking 
 
An approach similar to TITAN (Dixon and Wiener 1993) 
is used in this work to derive the initial precipitation 
motion field. In this approach, the mosaicked rainfall 
rate field is first segmented into storm “cells” using 
threshold of 0 mm hr-1 as shown in Fig. 4, where red 
and black lines are used to indicate the rainfall rate 
contours (> 0 mm hr-1) at current and previous (10 
minutes earlier) moments, respectively. In this 
example, a big storm cell can be found in the center of 

the area, and small cells can be found on the right side. 
Since the time interval between these two moments are 
10 minutes, the movements of relative big cell are not 
easily identified because of shape variations.  
 

 
 

Figure 3. The rainfall rate mosaic at 2210 UTC 25 
May 2015. 

 

 
 
 

Figure 4. The contours of segmentations at 2210 UTC 
(red) and 2200 UTC (black) 25 May 2015. 

 
 
The center of each cell is then calculated with a K-
mean method (e.g. Spath 1985; Arthur and Vassilvitskii 
2007) as shown in Fig. 5. Matching storm cells at T-1 
and their counterparts at T using an approach similar 
to the one proposed by Dixon and Wiener (1993). The 
correct matching pair in Fig. 5 (e.g. 𝐶%&'%  and 𝐶%& ) 
associates with short distance, similar characteristics 
(size, and total water content), and within the maximum 
travel distance (Dixon and Wiener 1993). Suppose 
there are total n1 and n2 cells are identified from T-1 
and T. For the 𝑖)* cell (center at (𝑥,&,  𝑦,&	)) at T-1, there 
are n2 possible counterparts at T. The distance, size, 
and total water content is calculated as: 
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4 %/4
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where j = 1, …, n2, Vi and Ri  are the total pixel number 
and the rainfall rate from 𝑖)* cell, respectively.  Different 
from Dixon and Wiener (1993), which finds the 
matching pairs through solving cost function using 
Hungarian method, the matched pair is identified 
through mininizing the normalized summation of these 
three factors.   
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where w1 = w2 = w3 = 1. The maximum travel distance 
is set as 20 km given the 10 minutes interval between 
T-1 and T. The precipiation motion vector is then 
calculated using the centroids shift as shown in Fig. 5. 
 

 
	
Figure 5. Motion vectors from three cells (C1, C2, C3, 

and C4).  
 
 

2.1.2 Motion field from RAP model  
 
The Rapid Refresh, an hourly updated assimilation and 
model forecast system, was implemented as an 
operational forecast system at the NOAA/National 
Centers for Environmental Prediction (NCEP) in 2012 
(Stanley et al. 2016). The RAP model can produce 
horizontal wind components (U and V) in spatial 
resolution of 10 km and temporal resolution of 1 hour.    
An example of the RAP model wind field from 850 hPa 
layer at 2200 UTC 05/25/2015 is shown in Fig. 6 (A), 
and the field from the same area as from Fig. 5 is 
shown in Fig. 6 (B). Four cells are also included as 
references. It could be found that both the direction and 
magnitude of the wind field (U and V) calculated from 
the centroid tracking and the model are different for all 
of these four cells.  In this work, the RAP model wind 
field is interpolated into 1 km-by-1 km spatial resolution 
for the purpose of combining with centroid tracking 
results.    

 
2.1.3 Combination of tracking and model wind field  
 

	
	
Figure 6. The model wind field at 2200 UTC 05/25/2015 
 
In the centroid tracking approach, such as TITAN 
(Dixon and Wiener 1993), one velocity (U and V) is 
assigned to one cell, and all pixels within this cell is 
assumed moving with the same velocity. For small area 
cells, the single velocity may represent the whole cell 
movement. However, for a large area cell, single 
velocity is not enough to capture the whole cell 
movement. Since the model field can provide the 
velocity distribution within a cell, combine the velocity 
field from centroid tracking and model is an optimal 
solution. In this work, the velocity from model field is 
corrected as: 
 
             𝑈,,1 = 𝑈,,1GH<IJ + (< 𝑈,GH<IJ > −𝑈,

)MNOP,QR)       (5)   
 
             𝑉,,1 = 𝑉,,1GH<IJ + (< 𝑉,GH<IJ > −𝑉,

)MNOP,QR)        (6) 
 
where 𝑈GH<IJ  (𝑉GH<IJ ) and 𝑈)MNOP,QR  (𝑉)MNOP,QR ) are 
velocity from model and tracking, subscripts “𝑗" and “𝑖" 
indicate the 𝑗)* pixel in the 𝑖)*  cell, and “<>” is mean 
operation. An example of the model (blue), and the 



corrected final (red color) wind velocity from one cell is 
shown in Fig. 7.  
 

	
Figure 7. Example of velocity distribution from model 
(blue) and corrected (red) wind velocity.  
 
 
 
2.2 Precipitation properties analysis 
 

 
 
Figure 8. One precipitation cell at T-3 (A), T-2 (B), T-1 
(C), and T (D). 
 
The evaluation of one cell at T-3, T-2, T-1 and T is 
shown in Fig. 8. It could be found from this example 
that not only the size shrinks from T-3 to T, but the total 

water content continuously decreases, and high 
intensity pixels disappears. Three variables are defined 
in this work to quantify the precipitation cell properties: 
a.) Size: the total number of pixels in one cell with 

value larger than 0 mm hr-1. 
b.) Total water content: the summation of all the pixels 

in one cell.  
c.) Pixel number at each Intensity level: number of 

pixels in each intensity level. In this work, the 
intensity level interval is 1 mm hr-1. 

 

 
 

Figure 9. Trend of the precipitation properties: (A) size, 
(B) total water content, and (C) number of pixels at 
each intensity level. 
 
 
2.3 Prediction 
 
After the precipitation motion field is obtained through 
the combination of centroid tracking and model wind 
field, the initial prediction result is calculated through 
the pixel-based linear extrapolation as proposed by 
Dixon and Wiener (1993). The trend of precipitation 
properties (size, water content, and # intensity level) 
are linearly fitted as shown in Fig. 9 with dashed line. 
The initial prediction is adjusted according to the trend 
of the precipitation properties.  
 
 
3.   Performance Evaluation 

The performance of proposed approach is evaluated 
using the flash flood case in Taxes and Oklahoma on 
25 May 2015.  The mosaicked rainfall rate at 2200 UTC 
and 2300 UTC is shown in Fig. 9 (A) and (B), and the 
predicted rainfall rate at 2300 UTC is shown in Fig. 9 
(C). Four approaches are evaluated in the current work: 
I.) prediction using the motion field derived from 
centroid tracking approach only; II) prediction using the 
motion field from model field only; III) prediction using 
motion field from the combination of centroid tracking 
and model field, but without precipitation properties 
adjustment; and IV) same as III but with precipitation 
properties adjustment.   	



	

	
 
Figure 9. (A) QPE results at 2200 UTC, (B) QPE results 
at 2300 UTC, and (C) predication results at 2300 UTC. 
	

	
	
Figure 10. (A) result from centroid tracking only; (B) 
result from model field only; (C) result from combination 
of centroid tracking and model field, without 
precipitation properties adjustment; (D) similar to III but 
with precipitation properties adjustment. 	
	
The contours of rainfall rate above 10 mm hr-1 from 
QPE and prediction results are shown in Fig. 10, where 
the black, red, and blue lines are used to indicate the 
contours from QPE at 2200 UTC, QPE at 2300 UTC, 
and prediction at 2300 UTC, respectively. The QPE at 
2300 UTC is defined as “ground truth”. Three scores 
are used to evaluate the performance: 1.) POD = 
a/(a+c), 2.) FAR = b/(a+b), 3.) MIS = c/(a+c), where a, 
b, and c represent “hit”, “false”, and “miss”. The term 
“hit” is defined as prediction and ground truth both 
above 10 mm hr-1, and “false” and “miss” is only 
prediction and ground truth above 10 mm hr-1, 
respectively.  The scores for each approach are 

presented in each figure. It could be found that using 
tracking or model field only can’t fully capture the storm 
cells movement, and the combination can have much 
better performance. The precipitation properties 
adjustment can further enhance the accuracy. 
 
	
5.   Summary 

A quantitative precipitation forecasting (QPF) approach 
combining centroid tracking and RAP model wind field 
is developed and tested in the current work. The 
analysis of precipitation properties in also introduced to 
further enhance the accuracy of the proposed QPF 
approach. Comparing with the QPF approaches rely on 
centroid tracking only, model field only, and the 
approach without precipitation properties analysis, the 
proposed new approach produce the optimal results 
with highest probability of detection (POD), lowest false 
alarm rate (FAR) and miss detection.  	
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