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1 Introduction

All National Weather Service (NWS) weather surveillance radars are and will continue to be
dual-polarimetric [21], [19]. Dual-polarimetric weather radars measure the co-polar horizon-
tally and vertically polarized returns from hydrometeors. This allows them to sense the size,
shape, and state features of the hydrometeors, features the previous generation of single-
pol (usually horizontally polarized) weather radars could not sense directly. The result is
greatly improved quantitative precipitation estimation (QPE) and hydrometeor classification
[6].

When processing weather radar data, multi-lag estimators allow for the estimation of signal
powers (from which reflectivity and differential reflectivity are obtained) and co-polar cross-
correlation coefficient (a measure of hydrometeor shape symmetry) without a need to first
obtain estimates of the system noise powers [10], [11], [13]. Having such multi-lag estimators
is useful since accurate noise power estimates can be difficult or time consuming to obtain
[4], [9], [8].

Thus far, the only multi-lag estimators that have been developed have been for the simul-
taneous mode of polarimetric weather radar operation, where the horizontal and vertical
polarizations are transmitted and received simultaneously by the radar. This makes sense,
since virtually all operational polarimetric weather radars today are mechanically scanned
parabolic dish radars, and these almost always operate in the simultaneous mode (e.g., the
NWS, WSR-88DP, dual-pol NEXRAD).

Future plans are considering replacing the nation’s aging mechanically scanned weather and
aircraft surveillance radar systems with a network of multifunctional electronically scanned
phased array radars that perform both tasks at the same time [18]. Because it simplifies
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design complexity and reduces cost, these phased-array radars will likely operate in an alter-
nating mode of polarimetric operation, where the radar alternates between the transmission
and reception of horizontally and vertically polarized beams on consecutive pulses [1].

To accommodate these phased-array radar systems, this paper develops noise power inde-
pendent multi-lag estimators for signal power, differential reflectivity, and co-polar cross-
correlation coefficient for the alternating mode of polarimetric weather radar operation. The
estimators are evaluated using simulated timeseries data and timeseries data from one of
CASA’s X-band, polarimetric, phased-array radars shown in Fig. 1 [15], [16].

Figure 1: CASA’s X-band, dual-polarimetric, phased-array radars. The phase-tilt (left) scans
electronically in azimuth and mechanically in elevation. The phase-spin (center) scans me-
chanically in azimuth and electronically in elevation. The phase-phase (right), on loan from
Raytheon Corp., scans electronically in both azimuth and elevation. Phased-arrays such as
these are designed to operate alone or as part of a collaborating network [12].

2 Background

As illustrated schematically in Fig. 2, weather radars probe the sky with a narrow pencil
beam. Sampling in the receiver partitions the beam into range bins. The combination
narrow beam and range bin partitioning allows weather radars to map the three dimensional
structures of storms. Polarimetric weather radars use in effect two beams, one horizontally
polarized (h-pol), another vertically polarized (v-pol). This enables the radar to measure the
shape features of the hydrometeors, such as the flattening of raindrops as they fall through
the beam.

2.1 Correlation Functions

Each range bin encloses a volume of atmosphere. The size of the volume is determined by
the radar’s beamwidths, the spacing between consecutive range bins, and the range bin’s
distance from the radar. For CASA’s phased-array radars with their two degree beamwidths
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Figure 2: Schematic of the beam from a dual-polarimetric weather radar.

and 50 meter range bin spacings, range bin volumes vary from a few thousand cubic meters
in size at the 1 km minimum range of the radar to a few million cubic meters in size at
the 30-40 km maximum range of the radar. During precipitation, a range bin will therefore
contain a huge number of individual hydrometers. The result is that the received co-polar
h-pol and v-pol I,Q timeseries samples from a range bin are random processes whose auto-
and cross-correlation functions are well modeled by Gaussians of the forms [5], [2], [10],
[13]:1,2.
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where Rhh(n) (Rvv(n)) is the auto-correlation function associated with the I,Q stream re-
sulting from the h-pol (v-pol) return to an h-pol (v-pol) transmitted pulse, and Rhv(n) is
the cross-correlation function relating h-pol and v-pol streams. In the equations:

• n is the lag index in number of pulses.

1Co-polar returns are the horizontally (vertically) polarized returns from a horizontally (vertically) po-
larized pulse.

2Ground clutter is modeled as a very narrow Gaussian centered around zero Doppler. Here we assume
that any ground clutter that may have been present in the I,Q timeseries has been removed, e.g., using
ground clutter filtering techniques such as GMAP [17] or CLEAN-AP [20]
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• Ts is the pulse repetition time (PRT) in seconds between pulses. PRT = 1/PRF, where
PRF is the pulse repetition frequency in Hz. In this paper we assume constant PRT
pulsing.

• λ is the radar’s wavelength. For CASA’s phased-array X-band radars, the wavelength
is just over 3 cm.

• Nh and Nv represent the noise powers due predominately to thermal sources, internal
and external to the radar. The δ(n) suggests that the noises uncorrelated in time. The
noise power Nh is also assumed independent of the noise power Nv.

2.2 Weather Data Processing

The goal of weather data processing is to estimate the parameters of the correlation func-
tions:

• Sh (Sv) represents the h-pol (v-pol) signal power scattered back to the radar from
h-pol (v-pol) pulses. Sh is used to obtain the reflectivity, Z, which is a measure of
hydrometeor concentration, and the ratio of the two powers is used to obtain the
differential reflectivity, Zdr = 10log10(

Sh

Sv
), which is a measure of hydrometeor shape

symmetry. In rain, Sh > Sv, due to the flattening of raindrops as they fall, resulting
in Zdr > 0.

• V represents the mean radial velocity of the hydrometers in the range bin. V < 0
(V > 0) for hydrometers moving towards (away) from the radar.

• W represents the spectrum width giving the variation in radial velocity about the
mean, e.g., due to turbulence and shear. Note that, in general, the spectrum width
measured by a horizontally polarized beam can be slightly different from the spectrum
width measured by a vertically polarized beam. These differences, due to wobble and
spin, however, are generally so weak that they can be ignored.

• ρhv is the co-polar cross-correlation coefficient that measures the shape symmetry of the
hydrometeors in the resolution volume. Taking values between 0 and 1, higher values of
ρhv indicate greater similarity in the horizontal and vertical sizes of the hydrometeors
in the range bin.

• φdp is the differential propagation phase whose rate of change with range (specific
differential phase) measures, for example, the amount of liquid water in the path of
the radar’s beam, the steeper the slope, the higher the rain rate.

2.3 Conventional “Noise Subtraction” Estimators

Estimators for the weather parameters can be obtained by mathematical manipulation of
the correlations in equations (1)-(3) leading to the so-called autocovariance algorithms for
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weather data processing [5], [2]. Conventional estimators for signal power, differential reflec-
tivity, and correlation coefficient are based on “noise subtraction”:

Sh = |Rhh(0)| −Nh (4)

Sv = |Rvv(0)| −Nv (5)

leading to the differential reflectivity estimator,

Zdr = 10log10

(
Sh
Sv

)
= 10log10

(
|Rhh(0)| −Nh

|Rvv(0)| −Nv

)
(6)

and co-polar correlation coefficient estimator,

ρhv =
|Rhv(0)|√
ShSv

=
|Rhv(0)|√

(|Rhh(0)| −Nh|)(Rvv(0)| −Nv)
(7)

Because the conventional estimators depend explicitly on the noise powers, they require some
means to estimate them.

In general, the noise powers depend on internal and external, predominately, thermal sources.
The implication is that the noise powers should ideally be estimated individually for each
radial [8]. In a phased-array radar, the noise powers would also need to be re-estimated
for any change in transceiver operating parameters, such as a change in receiver bandwidth
resulting from an on-the-fly change in a pulse compressed waveform.

One approach for “radial based” noise power estimation would involve N “receive only”
pulses generated with the transmitter turned off followed by M normal pulses generated
with the transmitter turned on. The noise powers would be estimated from the receive only
pulses, the weather parameters from the normal pulses. Receive only pulses are done by the
Terminal Doppler Weather Radar (TDWR) – not at the start of each radial, but at the start
of each azimuth sweep – for noise power estimation [3]. An alternative approach for radial
based noise power estimation would involve generating pulses normally with the transmitter
turned on, identifying and discarding range bins that contain signal, and estimating the
noise powers from the signal free range bins that remain [4], [9], [8]. Such a method has been
accepted for implementation in the WSR-88D [8].
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Both of these approaches have issues when it comes to X-band phased-array radars. Receive
only pulses would take away time from data collection, a particular problem for phased-
array radars, which are intended to be multifunctional, interleaving weather surveillance
with aircraft surveillance and tracking [19]. Estimating the noise from signal free range bins
is a problem in that accurate noise estimation can require more signal free range bins than
can be found in an X-band radar, which generally have short 30-40 km ranges, the entirety
of which will often contain signal when weather is passing over the radar.

The various difficulties with accurate noise power estimation motivates the use of estimators
that are independent of the noise powers. The papers [10], [11], [13] developed a number of
multi-lag estimators, including estimators for signal power,

Sh =
|Rhh(1)|4/3

|Rhh(2)|1/3
(8)

differential reflectivity,

Zdr = 10log10

(
|Rhh(1)|
|Rvv(1)|

)
(9)

and correlation coefficient,

ρhv =
0.5(|Rhv(−1)|+ |Rhv(1)|)√

|Rhh(1)||Rvv(1)|
(10)

The advantage of these estimators is that because they do not use the lag-0 autocorrelations
Rhh(0) and Rvv(0), they are independent of the noise powers. They thus avoid the need for
noise power estimation.

3 Multi-Lag Extensions to the ALTERNATING Mode

The issue with the estimators developed in [10], [11], [13] is that they assume the SIMUL-
TANEOUS or SHV mode of dual-polarimetric weather radar operation. Because the SHV
mode requires transmitting and receiving both polarizations at the same time, it significantly
complicates phased-array antenna design [1]. As a result, most dual-polarimetric phased-
array radars, including all of CASA’s, use the ALTERNATING or AHV mode in which the
radar transmits and receives only one polarization at a time, alternating between the two
polarizations on consecutive pulses. Fig. 3 compares the two modes.

The SHV mode leads to the correlations in equations (1)-(3), where, because both polariza-
tions are received with each pulse, the correlations are defined for all lags. Since the AHV
mode only receives one polarization at a time, the correlations are not defined for all lags.
In particular, the cross-correlation is not defined for lag-0. The AHV mode thus leads to a
different set of correlation functions, requiring a different set of estimators.
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Figure 3: Schematic comparing the SHV mode of dual-polarimetric weather radar operation
(top) to the AHV mode (bottom). The SHV mode transmits and receives both polarizations
with each pulse. The AHV mode transmits and receives one polarization at a time, alternating
between polarizations on consecutive pulses.

To relate the AHV mode to the SHV, let x be the stream of co-polar AHV h-pol I,Q samples
and y the stream of co-polar AHV v-pol I,Q samples. Noting that the AHV h- and v-pol
samples come at half the rate as their corresponding SHV samples and that the AHV h-
and v-pol samples are produced with a lag of two pulses between consecutive h-pol (v-pol)
samples, we have,

Rxx(n) = Rhh(2n) (11)

Ryy(n) = Rvv(2n) (12)

Rxy(n) = Rhv(2n− 1) (13)

where Rxx(n) and Ryy(n) are the x, y autocorrelation functions respectively and Rxy(n) is
the cross-correlation function between the x and y I/Q streams.

3.1 Conventional AHV Estimators

Conventional AHV estimators for signal power have the same “noise subtraction” form as
in the SHV case,

Sh = |Rxx(0)| −Nh (14)

and
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Sv = |Ryy(0)| −Nv (15)

As a result, the AHV differential reflectivity estimator has the same form as the SHV esti-
mator,

Zdr = 10log10(
Sh
Sv

) (16)

On the other hand, because it is not possible to obtain Rhv(0) from Rxy(n) (see equation
(13)), the AHV estimator for cross-correlation has a much different form than the SHV
estimator. There are a number of AHV estimators for correlation coefficient, cf. [5], [2]. The
estimator we use in the performance section of this paper is the recent one from [14],

ρhv =
0.5(|Rxy(0)|+ |Rxy(1)|)

(ShSv)3/8|Rxx(1)Ryy(1)|1/8
(17)

Again, because the signal powers that appear in the conventional AHV estimators depend
explicitly on the noise powers, their implementation would require some means for noise
power estimation.

3.2 Multi-Lag AHV Estimators

Using equations (1)-(3) along with the relationships in equations (11)-(13) in this section we
extend the multi-lag estimator concept to the AHV mode by deriving AHV multi-lag esti-
mators for signal power, differential reflectivity, and correlation coefficient. Similar to their
SHV counterparts, the advantage of the estimators we develop is that they are independent
of the noise powers.

3.2.1 Signal Power

A multi-lag estimator for signal power for the AHV mode follows immediately from the
multi-lag estimator for the SHV mode,
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resulting in,

Sh =
|Rxx(1)|4/3
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(18)

3.2.2 Differential Reflectivity

A multi-lag estimator for differential reflectivity for the AVH mode follows immediately from
the multi-lag estimator for the SHV mode,

10log10
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resulting in,

Zdr = 10log10

(
|Rxx(1)|
|Ryy(1)|

)
(19)
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3.2.3 Correlation Coefficient

Like the other estimators, our multi-lag estimator for correlation coefficient for the AHV
mode starts with the multi-lag estimator for the SHV mode,

ρhv =
0.5(|Rhv(−1)|+ |Rhv(1)|)√

|Rhh(1)||Rvv(1)|
(20)

Regarding the numerator, we can use the relationship,

Rxy(n) = Rhv(2n− 1) (21)

to obtain,

0.5(|Rhv(−1)|+ |Rhv(1)|) = 0.5(|Rxy(0)|+ |Rxy(1)|) (22)

Regarding the terms in the denominator, however, we have the issue that since Rxx(n) =
Rhh(2n) and Ryy(n) = Rvv(2n), we cannot estimate |Rhh(1)| and |Rvv(1)| directly and must
estimate them indirectly. To do so, consider the magnitude curve |Rhh(n)|, n = . . .−1, 0, 1 . . .
in Fig. 4. Without noise, the curve has the form of a Gaussian. That is, when Nh = 0, the

Figure 4: Theoretical magnitude curve |Rhh(n)|. Without noise (red), the curve is Gaussian.
The goal is to obtain an approximation for |Rhh(1)| using the AHV correlation magnitudes
|Rxx(1)| and |Rxx(2)|.
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auto-correlation magnitude curve can be written as,

|Rhh(n)| = |Shexp
[
−8π2W 2(nTs)

2

λ2
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exp
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|
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s n
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= a× exp

[
− n

2

2c2
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(23)

with the parameters a and c defining the height and width of the Gaussian curve. If we can
obtain estimates for a and c, then we have the approximation,

|Rhh(1)| = a× exp
[
− 1

2c2

]
(24)

To obtain estimates for the parameters a and c, we will use the observed correlations
|Rxx(1)| = |Rhh(2)| and |Rxx(2)| = |Rhh(4)|, see Fig. 4. With these observed correlations,
we get two equations for the two unknowns,

|Rxx(1)| = a× exp
[
−(n = 2)2

2c2

]
= a× exp

[
− 4

2c2

]
= a× exp

[
− 2

c2

]
(25)

and

|Rxx(2)| = a× exp
[
−(n = 4)2

2c2

]
= a× exp

[
− 16

2c2

]
= a× exp

[
− 8

c2

]
(26)

Solving the first equation for a we obtain,
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a = |Rxx(1)|exp
[
+

2

c2

]
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Plugging this into the second equation and solving for c, we obtain,
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√
−6

ln( |Rxx(2)|
|Rxx(1)|)

(28)

Plugging the results into (24) and solving we get the approximation,
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|Rhh(1)| = a× exp
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= |Rxx(1)|5/4|Rxx(2)|−1/4 (29)

A similar derivation gives us an approximation for |Rvv(1)|,

|Rvv(1)| = |Ryy(1)|5/4|Ryy(2)|−1/4 (30)

Plugging the approximations in (29) and (30) into equation (20) and simplifying we obtain
a multi-lag estimator for correlation coefficient for the AHV mode,

ρhv =
0.5(|Rhv(−1)|+ |Rhv(1)|)√

|Rhh(1)||Rvv(1)|

=
0.5(|Rxy(0)|+ |Rxy(1)|)√

|Rxx(1)|5/4|Rxx(2)|−1/4|Ryy(1)|5/4|Ryy(2)|−1/4

=
0.5(|Rxy(0)|+ |Rxy(1)|)

|Rxx(1)|5/8|Rxx(2)|−1/8|Ryy(1)|5/8|Ryy(2)|−1/8

=
0.5(|Rxy(0)|+ |Rxy(1)|)|Rxx(2)|1/8|Ryy(2)|1/8

|Rxx(1)|5/8|Ryy(1)|5/8
(31)
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1. Generate two independent white noise processes, each consisting of M samples;
2. Correlate them according to ρhv;
3. “Color” them via filtering to give them Gaussian spectra with parameters, Ts,
λ, V and W ;

4. Scale them to give them the signal powers Sh and Sv (equivalently to give them
a desired SNR and Zdr, in which case, Sh = Nh × 10SNR/10 and Sv = Sh

10Zdr/10
);

5. Shift the phase between the two processes to according to φdp;
6. Add to each process an independent white noise process, one with power Nh, the

other with power Nv;
7. Extract the M AHV I,Q samples from the resulting SHV samples.

Table 1: Pseudocode for an I,Q weather data simulator.

4 Performance Results

This section compares the multi-lag estimators for the AHV mode in equations (18), (19),
(31) to the conventional estimators for the AHV mode in equations (14), (16), (17). This
is done first using simulated I,Q timeseries and then using actual I,Q timeseries from one of
CASA’s X-band, polarimetric, AHV radars.

4.1 Simulation Results

The correlation functions in equations (1)-(3) tell us how to simulate I,Q timeseries from a
clutter free range bin uniformly filled with (assumed liquid) hydrometeors. Pseudocode is
listed in Table 1, see also [7]. As we see from the table, the inputs to the I,Q simulator are
the desired weather parameters Sh, Sv, V , W , ρhv, and φdp, the assumed radar wavelength λ
and noise powers Nh and Nv, and the assumed radar operating parameters Ts and number
of samples per radial M . The output is M AHV I,Q samples whose correlations satisfy the
input parameters.

Similar to the evaluations of the SHV multi-lag estimators in [10], [11], we use the I,Q
simulator to evaluate the AHV estimator performances in terms of their error biases and
standard deviations as functions of spectrum width. The performance estimates are obtained
by performing 1000 Monte Carlo experiments, each using a new set of randomly generated
I,Q samples. The simulation parameters used to generate the I,Q samples are listed in Table
2. The results are shown in Figs. 5-7. In generating the results we assume that when we do
the noise subtraction for the conventional estimators we know the noise powers Nh and Nv

exactly. As seen in Figs. 5-7, except for the standard deviation of correlation coefficient,
the performances of the multi-lag AHV estimators are nearly identical to the performances
of the conventional AHV estimators.

The SENSR document [19] gives the performances that will need to be met by any future
WSR-88D replacement. It is of interest, therefore, to see how the AHV estimators perform

14



Variable Value Units Remarks
SNR 5 dB
Zdr 1 dB
ρhv 0.97
V 2 m/s The velocity value is arbitrary since the results de-

pend only on correlation magnitudes.
φdp 10 deg The differential phase value is arbitrarily since the

results depend only on correlation magnitudes.
λ 0.0318 m This corresponds to the X-band radar center fre-

quency of 9.41 GHz. All of CASA’s phased-array
radars operate in the X-band.

Nh, Nv -95, -95 dBW These are typical noise power values for CASA’s
phased-array radars.

M 128 pulses/radial
Ts 266.7 µs This corresponds to a PRF = 3750 Hz. This is

the maximum PRF for an unambiguous range of 40
km. It leads to an AHV x (or y) data unambiguous
velocity of 14.9 m/s.

Table 2: Parameters used for the simulation of the I,Q timeseries samples used in the eval-
uation of the AHV estimators.

against the SENSR requirements. SENSR does not give an explicit requirement for sig-
nal power, but it does give explicit requirements for differential reflectivity and correlation
coefficient. These are listed in Table 3.

Variable SNR W ρhv Bias Standard Deviation
Zdr 20dB 2m/s 0.99 ≤ 0.2dB ≤ 0.4dB
ρhv 10dB 4m/s 0.99 ≤ 0.006
ρhv 20dB 2m/s 0.99 ≤ 0.006

Table 3: SENSR requirement for correlation coefficient.

Running the I,Q simulator with the SENSR parameters (i.e., SNR, W , and ρhv as in Table
3, the remaining parameters as in Table 2) we get the AHV estimator performances in
Table 4. As seen, for M = 128, PRF = 3750, both the conventional and multi-lag AHV
estimators meet the differential reflectivity requirements. For M = 128, PRF = 3750,
the conventional AHV estimator also meets the requirements on correlation coefficient. The
multi-lag estimator, on the other hand, can only meet the correlation coefficient requirements
if the number of pulses and/or PRF is increased. This is illustrated in Table 5, where the
number of pulses has been increased to M = 150 and the pulse rate to PRF = 4250 Hz.
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Variable Bias Standard Deviation

Zdr Requirement 0.2 dB 0.4 dB

Conventional 0.0076 dB 0.2606 dB
Multi-Lag 0.0081 dB 0.2729 dB

ρhv Requirement 0.006 0.006

Conventional 0.0021 0.0054
Multi-Lag 0.0106 0.0062

Table 4: AHV estimator performances relative to the SENSR requirements for M = 128 and
PRF = 3750 Hz (giving maximum unambiguous range = 40 km and maximum unambiguous
velocity = 14.9 m/s).

Variable Bias Standard Deviation

ρhv Requirement 0.006 0.006

Conventional 0.0014 0.0053
Multi-Lag 0.0023 0.0054

Table 5: AHV estimator performances relative to the SENSR correlation coefficient require-
ment for M = 150 and PRF = 4250 Hz (giving maximum unambiguous range = 35 km and
maximum unambiguous velocity = 16.9 m/s).

Figure 5: Simulated estimator performances for signal power Sh for the simulation parame-
ters in Table 2.
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Figure 6: Simulated estimator performances for differential reflectivity Zdr for the simulation
parameters in Table 2.

Figure 7: Simulated estimator performances for correlation coefficient ρhv for the simulation
parameters in Table 2.
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4.2 Real Data Results

In addition to the simulation experiments, we also compared the multi-lag and conventional
estimators for correlation coefficient using I,Q data from one of CASA’s X-band, polarimetric,
AHV, phased-array radars. The radar’s range was set to 30 km, 64 pulses were used per
radial, and the PRF was set at 3900 Hz. The radar uses pulse compressed waveforms, a
short pulse for the first 10 km, a long pulse for the remaining 20 km.

Fig. 8 compares range profiles of SNR, spectrum width, and correlation coefficient. In the
figure, the conventional correlation coefficient estimate is in blue and the multi-lag estimate
is in red. As seen, the match between the conventional and multi-lag estimator is reasonably
good, except where the signal-to-noise ratio (SNR) is low or the spectrum width (W) gets
large, which we expect given the simulation results in Fig. 7. The close match in the
performance of the conventional and multi-lag estimators is shown again in the PPI (plan
position indication) plots in Fig. 9.

Figure 8: Range profile from one of CASA’s phased-array radars comparing the conventional
correlation coefficient estimator (ρhv) to the multi-lag estimator as functions of signal-to-
noise ratio (SNR) and spectrum width (W).
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Figure 9: Plan Position Indication (PPI) scan from one of CASA’s phased-array radars
comparing the conventional correlation coefficient estimator (ρhv) to the multi-lag estimator
as functions of signal-to-noise ratio (SNR) and spectrum width (W).

5 Summary and Conclusions

Conventional estimators of signal power, differential reflectivity, and co-polar correlation
coefficient in dual-pol weather radars require estimates of the system noise powers. Since the
noise powers are due to both internal and external factors, estimates should ideally be done
for each radial. For the next-generation multi-functional, short-range phased-array radars
being developed, noise power estimators can take away precious time from data collection or
may not give results during the critical times when weather is passing over the radar.

To avoid the need for noise power estimation, prior literature developed so-called “multi-
lag” estimators for the SHV mode of dual-pol weather radar operation where the I,Q time-
series from both polarizations is simultaneously available with each pulse. These estimators,
because they do not use the lag-0 autocorrelations are independent of the system noise
powers. In this paper we extended the multi-lag estimator concept to the AHV mode, which,
due to design complexity, may be the most cost effective choice for the future polarimetric
phased-arrays.

Simulation results and comparisons on actual data from one of CASA’s X-band, dual-
polarimetric, AHV, phased-array radar showed the new AHV multi-lag estimators compare
favorably to their conventional counterparts, even in the unrealistic case where the conven-
tional estimators were given exact, error free value of the noises.
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