
1 
 

240      VERIFICATION OF THE MESH PRODUCT OVER THE CANADIAN PRAIRIES USING A HIGH-
QUALITY SURFACE HAIL REPORT DATABASE 

SOURCED FROM SOCIAL MEDIA 
 

Julian C. Brimelow1 and Neil M. Taylor1 
 

1National Lab-West, Environment and Climate Change Canada (ECCC), Edmonton, AB 
 
 
1. INTRODUCTION1 
 
Timely and accurate severe weather reports 
support the issuance of warnings, warning 
verification, and research and development. 
Obtaining accurate severe reports for these 
purposes is, however, plagued by many 
uncertainties. Moreover, Blair et al. (2011) found 
that ~25% of hail reports in the U.S. Storm Data 
archives were not associated with strong radar 
echoes at the time of the report  
 
Of all precipitation types, reports of hail are 
probably prone to the largest uncertainties and 
inaccuracies. The literature is replete with 
examples of uncertainties related to reporting hail 
(e.g., Witt et al. 1998; Schaefer et al. 2004; Blair 
and Leighton 2012; Allen and Tippet 2015). These 
uncertainties can be traced to several factors 
related to the physical characteristics of hailswaths 
(e.g., high spatiotemporal variability) and hail (e.g., 
irregular shapes). Additional sources of 
uncertainty arising from human-related errors are: 
 
• Timing and location of reports. 
• Whether the reports reflect the largest hail at 

a given location. 
• Measuring the maximum hail size.  
• Confusion surrounding reporting 

procedures—what axis dimension to report.  
 

Other confounding factors that affect hail reports 
are: 
• The hail size is often a guess-estimate or 

related to an object of unknown size. 
• The size is estimated after stones have 

experienced substantial melting. 
• Reports can be biased to severe thresholds 

and/or familiar objects, 
• Population bias in remote areas. 
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Consequently, obtaining reliable hail reports, 
particularly for sparsely populated areas such as 
the Canadian prairies, is especially problematic. 
 
In an attempt to address some of the above 
problems, three projects in the United States (US) 
over the past decade have conducted storm-scale 
sampling of hailstorms:  
 

• SHAVE (Severe Hazards Analysis and 
Verification Experiment; Ortega et al. 2009) 

• IBHS (Insurance Institute for Business and 
Home Safety, Heymsfield et al. 2014; 
Giammanco et al. 2015,)  

• HailSTONE (Hail Spatial and Temporal 
Observing Network Effort; Blair et al. 2017) 

 
Findings from HailSTONE highlight serious 
problems with hail reports in the U.S. Storm 
Data—problems that almost certainly apply to hail 
data in Canada. For example, Blair et al. found 
that the extent and magnitude of hail reported by 
dedicated chase teams was frequently much 
larger than that suggested by information in Storm 
Data. Moreover, their research found that more 
than 30% of the hail storms sampled during 
HailSTONE did not have an associated hail report 
in Storm Data. Blair et al.’s findings suggest that 
addressing report biases and uncertainties 
requires detailed observations at the storm scale. 
This is not feasible, nor practical in everyday 
operations (e.g., Hyvären and Saltikoff 2010).  
 
The above limitations of human-sourced hail 
reports paint a rather dire picture. Could 
alternative data sources help mitigate the myriad 
of issues facing traditional hail reports? The 
answer to this is a cautious “Yes”. For example, 
radar-derived products such as the Maximum 
Expected Size of Hail (MESH; Witt et al. 1998) 
could be used as a proxy for human reports, and 
also have the advantage that the location, timing 
and magnitude of hail are not subject to human-
caused uncertainties and errors, or population 
biases. Moreover, radar-derived data are also 
available in near-real time, whereas there is 
oftentimes a delay before forecasters are alerted 
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to a hail event via human reports. MESH has 
successfully been used to study the size and 
spatiotemporal distribution of hail in Europe (e.g., 
Betschart and Hering 2012; Nisi et al. 2016), 
Australia (e.g., Warren et al. 2017), and the US 
(e.g., Ortega et al. 2009; Cintineo et al. 2012). But 
before using MESH for this purpose, one needs to 
first verify its suitability and accuracy in Canada. 
That in turn requires addressing the inaccuracy 
and paucity of publicly sourced hail reports.  
 
Over the past 10 years or so, social media has 
become an increasingly important source of 
information for precipitation type and severe 
weather reports (e.g., Ferree et al. 2009; Hyvären 
and Saltikoff 2010; Chen et al. 2016; Snook et al. 
2016). A number of Apps have also been 

developed to facilitate the reporting of severe 
weather—for example, mPING (Elmore et al. 
2014) and a photo report system developed by 
Longmore et al. (2015). Following the success of 
these initiatives, we set out to determine the utility 
of using reports from social media of hail on the 
data-sparse Canadian prairies.  
 
Here we seek to answer the following questions: 
 

1) Can leveraging the crowd sourcing capability 
of social media be used to collect images of 
hail and obtain objective and accurate hail 
size measurements? 

2) Can MESH be used as a reliable 
surrogate/proxy for hail reports?

Fig. 1: Study area over the Canadian Prairie Provinces. Distribution of reports (red dots) used in analysis. Radars 
(green crosses) and 150 km range rings (blue and shaded) also shown. 
 
2. DATA AND ANALYSIS TECHNIQUES 
 
The study area we considered is the Canadian 
Prairies (see Fig. 1). This region is known for its 
relatively high incidence of severe summer 
weather (including hail), and with the exception of 
a few large urban centres, has a very low 
population density.  
 
 
2.1 Social Media Reports 
 
Starting around 2012, three hashtags were 
introduced that users of Twitter could use to report 
high-impact weather. Here we focus on hashtags 
used to report severe weather in the provinces of 

Alberta (#abstorm), Saskatchewan (#skstorm) and 
Manitoba (#mbstorm).  
 
The aforementioned Twitter feeds were scanned 
for the summers of 2014 through 2016 for Tweets 
that included images of hail, or links to images of 
hail elsewhere (e.g., Facebook and Instagram). 
Almost 1700 images were acquired in this way.  
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Fig. 2: Number of Tweeted hail photos by year. 
 
The storm hashtags have become increasingly 
popular since they were first introduced (Fig. 2), 
with the majority of images collected in our 
database increasing each year. Most of the photos 
were from Alberta (Fig. 3). 
 

 
Fig. 3: Percentage of photos by year for Alberta (AB), 
Saskatchewan (SK) and Manitoba (MB). 
 
To facilitate analysis of the images, they were 
classified into four groups (see Fig. 4): 
 

1) Photos of damage only. 
2) Photos of hail scenes (hail too far away to 

accurately infer size). 
3) Photos of hail that did not include a scalable 

object. 
4) Photos of hail that included a scalable object. 

 

 
 

Fig. 4: Four classes into which photographs of hail 
posted on social media were binned. 
 

It is clear from Fig. 5 that photos with no scalable 
objects or photos of hail scenes made up the 
majority (~73%) of the photos. Photos of damage 
were in the minority (~4%). Only about 22% of the 
photos included a scalable object next to the hail. 
By far the biggest issue with hail photos is that 
people tend to hold the hail in their open hand, 
which precludes accurately estimating the hail 
size. Consequently, over 80% of the 1700 photos 
were of little or no use for our research purposes. 

 
Fig. 5: Breakdown (in %) of hail photo classes.  

Photos were also classified as to their likely 
location:  
 
• Events observed at home or summer cabin. 
• Events away from home (e.g., at work, 

shopping, chasing, camping). 
• Events where the location was unclear.  

 

 
Fig. 6: Location where photos appeared to have been 
taken in 2016. 
 
Data shown in Fig. 6 indicate that most photos in 
2016, for example, were taken at peoples homes 
or cabins, with an even split (~14% each) for 
photos taken away from home or for which the 
location is unclear/uncertain. Implications of this 
finding are discussed in Section 4. 
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The dimensions of the primary (Dx) and secondary 
axes (Ds) were calculated by scaling the 
dimensions in the photo using an object of known 
diameter included in the photo (See Fig. 7). These 
data were then used to calculate the aspect ratio 
(α) and finally the equivalent spherical diameter 
(De) using the following formula: 
 

De = α0.333Dx  (1) 
 
The De of the largest stone in each photo was 
recorded. In reality, most stones are tri-axial 
ellipsoids, with a mean axis ratio of Dm (minimum 
axis) to Dx of ~0.77 (Matson and Huggins 1980).  
 

 
Fig. 7: Image showing how each hailstone was 
measured using a scalable object. Emphasis was 
placed on measuring the largest hailstones. 
 
Using the observed axis ratio from the photos to 
calculate De yields equivalent diameters within a 
few mm of the diameter estimated assuming the 
stones are spheroids. Additional sensitivity tests 
for the expected errors in measuring the scaling 
objects and in fitting an ellipsoid around the stones 
typically produced uncertainty in De of 1 mm to 3 
mm (i.e., within ~10% of De). Photos of hailstones 
having highly irregular shapes, such as shown in 
Fig. 8, were not included in our dataset because of 
the large uncertainty in estimating a value of De. 
 
 
2.2 Radar Data and Analysis  
 
Eight C-band radars provide coverage for most of 
the agricultural zone and urban centres in the 
study area, although there are significant gaps in 
radar coverage as evident in Fig. 1.   
 
For each convective cell identified and tracked by 
the Universal Radar Processor (URP) software, 
numerous key radar-derived metrics are archived 

for the purpose of quantifying the severity of the 
cell. Specifically, we are concerned with hail-size 
estimates at the surface determined using 
empirically derived algorithms of Treloar (1998) for 
Australian hailstorms (later implemented by Joe et 
al. 2004), and the MESH algorithm of Witt et al. 
(1998). 
 

 
Fig. 8: Photo of hail with an irregular shape because of 
surface lobes. 
 
Here we compare hail-size estimates from these 
two hail algorithms with hail-size estimates 
calculated from photographs as described in 
Section 2.1. For the radar data, we used the 
largest hail-size estimate from the two algorithms 
for each cell—that is, the pixel having the largest 
estimated diameter. We recognize that a method 
utilizing a cell-representative MESH value may be 
more appropriate, but here adopted the existing 
methodology used to produce post-processed 
products in URP. 
 
To avoid data-sampling issues associated with the 
cone of silence around the radars and at large 
distances from the radars, we considered only 
those events (and cells) located between 30 km 
and 150 km from the radars. Because we were 
using data from an experimental server, there 
were sometimes dropout issues with the archived 
data that reduced the number of possible events. 
 
Fig. 9 below summarizes the methodology 
adopted for this study. We used a search radius of 
10 km around each report location, which is similar 
to the radius used by Warren at al. (2017). 
Reasons for using 10 km are as follows:  
 
• Canadian radar products are updated every 

10 minutes, which introduces uncertainty in 
the storms’ locations relative to the report, 
especially when cells are moving rapidly. 
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• To account for hydrometeor drift. This is 
especially relevant for the MESH and Teloar 
algorithms because they relate data above 
the freezing level to the expected hail size at 
the surface.  

• To allow for a margin of error with the report 
location (we did not have an exact latitude 
and longitude for each photo, rather the 

location was estimated using information 
provided about road intersections, 
neighbourhood names, or distances from the 
nearest town, for example). Unless provided, 
the longitude and latitude for each event were 
determined using Google Earth. 

 

 
Fig. 9: Schematic showing method used to identify the relevant MESH value for each hail event in the database 
 
Both radar and hail events were subjected to 
rigorous quality control (QC). For hail, only reports 
which met the following criteria were included: 
 
• Reports for which we were highly confident 

that the size was representative of the largest 
hail within 10 km.  

• Reports for which we had high confidence in 
the location. 

• Reports for which we had high confidence in 
the scaled De, and for which the hail had 
experienced minimal melting. 

 
Archived storm cell data were also subjected to 
rigorous QC. We excluded hail events if the storm 
associated with the report was attenuated or 
affected by beam blocking. Sometimes individual 
scans indicated MESH values that were much 
higher (one standard deviation) than preceding 
and subsequent scans. In such instances, the next 
largest MESH value within 10 km was selected.  
 
Despite the challenges associated with  using 
photos submitted on social media, the subset of 
viable images (374) is still relatively large due to 
the large numbers of photos submitted using this 
crowd sourcing mechanism.   
 
Ultimately, we identified 65 “golden” cases which 
could be used to verify the hail-size estimates from  

 
the MESH and Treloar algorithms. The locations of 
the reports are shown in Fig. 1, and the size 
distribution of the hail sizes used in our analysis is 
shown in Fig. 10.  

 
Fig. 10: Histogram of measured equivalent spherical 
diameters for the 65 hail cases used in our analysis. 
 
The mean De of the 65 reports was 3.8 cm, with De 
ranging between 1.1 cm and 7.7 cm. The mean 
aspect ratio of the stones was 0.88. Fig. 10 
suggests that events for which De was < 3 cm 
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were underrepresented in our dataset (see also 
section 3.1). 
 
 
3. RESULTS 
 
3.1 Hailstone Characteristics 
 
Here we discuss the size distribution of all 600 
stones for which we calculated De using photos 
from social media. Importantly, Fig. 11a,b shows 
that using photos from social media instead of 
public reports avoids the minimum in hail sizes 
between 3 cm and 4 cm and also reduces the 
spike in occurrence of golfball-sized stones.  
 

 
 

 
Fig. 11: Histograms of hail sizes from (a) public reports 
for 2014-2016 and (b) from social media (all measured 
stones). Red bar indicates spike in reports of golfball-
sized hail in public reports. 
 
Problems with the hail-size distribution of public 
hail reports has been noted elsewhere (e.g., 
Schaefer et al. 2004; Jewell and Brimelow 2009). 
One limitation of our database is that smaller hail 
events (i.e., De < 3 cm) are underrepresented. 
Inspecting the collection of photographs we 
obtained from social media reveals a possible 
explanation for this. Specifically, it appears that 
people are much less likely to measure small hail, 
or place an object next to small hail when taking 
photos to post on social media. 
The large database of ~1700 photos permitted us 
to identify the most frequent issues that were 

encountered when selecting suitable photographs 
of hail for our analysis: 
 

1) No location provided or only a vague 
reference to location provided. 

2) Tweet posted tens of minutes to hours after 
the storm. 

3) Uncertainty in event time (disagreement 
between time stamp on Tweet and time 
provided in Tweet). 

4) Using objects that do not have a fixed size or 
indeterminable size. 

5) Photos of hail held in someone’s hand, with 
no scalable object. 

6) Photos taken after hail experienced 
significant melting. 

7) Photos taken at oblique angles. 
8) Photos showing the “wrong” side of a coin 

(i.e., heads). 
9) Photos of the scalable object(s) and 

hailstones lying in different planes. 
10) Combinations of the above. 

 
The above list indicates where we should be 
focussing our efforts when educating the public on 
how to report hail in general, but also when 
educating them on using social media to post 
useful photographs of hail.  
 
 
3.2 Verification of MESH 
 
A scatterplot of MESH against De (Fig .12a) shows 
that the MESH algorithm does a fairly good job of 
capturing the variability in hail size in our dataset. 
Overall the correlation coefficient is 0.70. In 
contrast, Fig. 12b shows that the Treloar algorithm 
has a much lower correlation (r = 0.54) with De, as 
evidenced by the larger scatter of the data. 
 
The scatterplot in Fig. 12a indicates that there is a 
tendency for MESH to overestimate smaller hail, 
whilst underestimating giant (D > 5 cm) hail 
events. In comparison, the Treloar algorithm (Fig. 
12b) tends to overestimate De across the entire 
size spectrum, but especially for hail reports with 
D < 4 cm.  
 

b 

a 
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Fig. 12: Scatter plots and linear best fits for (a) MESH 
and (b) existing hail algorithm (Treloar 1998). Dashed 
grey line represents 1:1 line. “r” represents the 
correlation coefficient and “p” the p-value. 
 
The above comments are reflected in whisker-box 
plots showing the distribution of errors for all 
observed sizes and by observed size category 
(Fig. 13 and Fig 14a). For all sizes, the 
interquartile range for MESH errors is between -
0.5 cm and 0.7 cm, with a median error of zero 
(i.e., no bias). Also, almost all the MESH errors 
are within +/- 2 cm. The mean absolute error 
(MAE) for MESH is 0.79 cm (21% of the mean 
observed diameter). In contrast, the Treloar 
algorithm displays a distinct positive bias, with an 
interquartile range between 0.7 cm and 2.6 cm, 
and a median error of 1.8 cm (MAE of 1.67 cm). 
Moreover, almost 50% of the Treloar algorithm 
errors exceed 2 cm. 
 

 
 

Fig. 13: Errors for the MESH (red) and the existing 
Treloar (green) hail algorithms in URP. Whiskers 
represent the inter-quartile range multiplied by 1.5. 
 
The tendency for MESH to overestimate De for 
smaller hail events and overestimate De for larger 
hail events is indicated in Fig. 14a. Specifically, 
the MESH error for observed hail less than 3 cm in 
diameter typically ranges between 0.1 cm and 1.2 
cm, with a median of 0.8 cm.  
 

 

 

 

 
Fig. 14: Errors ranked by observed diameter (De) in (a) 
and by MESH diameter (D) in (b).  

a 

b 

b 

a 
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In contrast, MESH errors for larger than golfball 
hail range between -1.7 cm and -0.1 cm, with a 
median error of -0.7 cm. For observed hail 
between 3.0 and 4.5 cm, MESH displays a small 
bias of near 0.1 cm, indicating only a slight 
tendency to overestimate the hail size over this 
size range. 
 
The errors shown in Fig. 14a are, however, not 
necessarily of much use operationally because 
forecasters do not know a priori what the observed 
hail size is going to be. Consequently, it is more 
instructive to look at the errors as a function of the 
estimated MESH hail size (D; Fig. 14b). 
 
Partitioning the errors according to the predicted 
hail sizes yields a very different picture. The data 
in Fig. 14b indicate that when the MESH errors are 
classified in this way, the nature of the errors is 
such that applying a bias correction to the MESH 
data is not feasible. Instead, it is probably more 
beneficial to determine a MESH threshold for 
severe hail (De ≥ 2 cm) as has been done by 
Cintineo et al. (2012) and Warren et al. (2017), 
who determined thresholds of 2.9 cm and 3.5 cm, 
respectively. 
 
 
4. DISCUSSION AND CONCLUSIONS 
 
Obtaining timely and accurate reports of hail 
continues to be a challenge. Herein we 
investigated the potential to use the radar-derived 
MESH product as a surrogate for human-sourced 
hail reports, and whether social media could be 
used to collect accurate measurements of hail for 
three summers (2014–2016) on the Canadian 
Prairies. 
 
We find that while social media has the potential to 
be a useful source of hail data to supplement 
traditional reports, many issues need to be 
overcome in order to realize its full potential. 
Issues with how hail is currently reported using 
Twitter mean that ~80% of the posted photographs 
are of little or no value for quantitative hail-size 
verification.  
 
To maximize the value of social media reports, 
weather agencies need to be proactive and reach 
out to educate social media users on best 
practices for posting reports. The most frequent 
problems with social media reports could be 
avoided, or mitigated, by encouraging users to 
follow some key guidelines: 

1) Include a scalable object of known size when 
taking photos of hail. 

2) Take photos looking vertically down on the 
hail and scalable object (see Fig. 7). 

3) Photograph hail as soon as it is safe, and 
search for a sample of the largest stones. 

4) Include the time and location in the message 
accompanying the photo. 

 
We found that most (~70%) of the photos were 
likely sent from people’s homes or summer cabins. 
This suggests that an alternative method for 
reporting hail size is possible. Namely, weighing 
the hailstone using a kitchen scale after 
photographing it with a scalable object and then 
including the weight in the message. This method 
avoids many of the uncertainties and 
measurement errors associated with traditional 
reporting methods. Additionally, it would be 
relatively easy to implement this approach, 
because many CoCoRaHS (Cifelli et al. 2005) 
volunteers already have a scale with which to 
weigh snow for determining the snow water 
equivalent.   
 
Despite the aforementioned limitations of using 
photographs posted on social media, the large 
number of photographs collected for this study 
(~1700) ensured that even after applying rigorous 
quality control and limits, we still had a relatively 
large sample of 65 “golden” cases that could be 
used to verify the MESH product. Hailstones in our 
analysis spanned a wide range between 1.1 cm 
and 7.7 cm, with a median diameter of 3.8 cm. 
 
Our verification metrics indicate that the Treloar 
(1998) hail-size algorithm shows little skill in 
estimating hail size and displays a large positive 
bias, especially for De < 4 cm. In contrast, we find 
that the MESH algorithm holds promise as a proxy 
hail-size product because of its small overall bias 
and mean absolute error (~0.8 cm). We find that 
the MESH errors change with the observed size, 
overestimating hail reports with De < 3 cm, while 
underestimating reports with De > 4.5 cm. Our 
findings for MESH are also broadly consistent with 
those of Betschart and Hering (2012). For 
example, the same bias behaviour displayed by 
MESH in our analysis was also noted in their work. 
 
While the data suggest that it may be possible to 
correct the bias in the MESH data across all 
observed sizes, partitioning the errors according to 
the predicted MESH sizes indicates that the nature 
of the errors is such that applying a bias correction 
to the MESH size estimates is not feasible. 
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Of note is that our finding that MESH could be 
used as a surrogate for hail size is in conflict with 
findings made by Ortega et al. (2009) using data 
from SHAVE. This discrepancy requires closer 
examination, but we can think of two possible 
reasons: 
 

1) We used a relatively large search radius of 10 
km to allow for uncertainties in report location 
and hydrometeor drift. In contrast, Ortega et 
al. (2009) used a search radius of only 3 km. 

 
2) We calculated the equivalent spherical 

diameter of the observed hail size from 
photos that included a scalable object. Ortega 
et al. (2009) based their hail sizes on reports 
solicited from phone calls, and the reported 
sizes were not necessarily obtained from 
directly measuring the hail.   

 
Future work will focus on adding non-severe and 
null cases to our dataset with the intention of 
identifying MESH thresholds for hail and severe 
hail. Our dataset has other applications such as 
examining storm environments associated with 
different hail-size categories, verification of other 
hail forecast products and for investigation of 
lightning-hail relationships. 
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