

Optimized polarimetric radar relations for snow estimation

Petar Bukovčić, Alexander Ryzhkov, and Dušan Zrnić

40th AMS Radar Conference, 29 August 2023

Current state of radar snow estimates

Source	Z(S) relation for dry snow
Gunn and Marshall (1958)	$Z = 448S^2$
Sekhon and Srivastava (1970)	$Z = 399S^{2.21}$
Ohtake and Henmi (1970)	$Z = 739S^{1.7}$
Puhakka (1975)	$Z = 235S^2$
Koistinen et al. (2003)	$Z = 400S^2$
Huang et al. (2010)	$Z = (106-305)S^{(1.11-1.92)}$
Szyrmer and Zawadzki (2010)	$Z = 494S^{1.44}$
Wolfe and Snider (2012)	$Z = 110S^{2}$
WSR-88D, Northeast	$Z = 120S^{2}$
WSR-88D, north plains-upper Midwest	$Z = 180S^{2}$
WSR-88D, high plains	$Z = 130S^{2}$
WSR-88D, Intermountain West	$Z = 40S^{2}$
WSR-88D, Sierra Nevada	$Z = 222S^2$

The multiplier in the power-law relations varies by an order of magnitude, no clear path how to chose optimal S(Z)

Multitude of S(Z) relations (Bukovčić et al. 2018)

ž

큉

虎

 \approx

哭

5 1 2 1 2 1 2 3

÷

X

ථ

Basic formulas

$$S = 610^{-4} \pi \int_{0}^{D_{\text{max}}} \frac{\rho_{s}(D)}{\rho_{w}} D^{3} V_{t}^{(s)}(D) N(D) dD \sim M_{2+\gamma}$$

Radar reflectivity

$$Z = \frac{|K_{\rm i}|^2}{|K_{\rm w}|^2} \int_0^{D_{\rm max}} \frac{\rho_{\rm s}^2(D)}{\rho_{\rm i}^2} D^6 N(D) dD \sim M_4$$

$$M_n = \int D^n N(D) dD$$

$$S \sim f_{rim}^{0.12} N_{0s}^{0.35} Z^{0.62}$$

The multiplier in the S(Z) relation changes more than an order of magnitude because N0s varies by 4 orders of magnitude

CIWRO

Snow size distribution

 $N(D) = N_{0s}D^{\mu} \exp(-\Lambda_s D)$

Snow density

$$\rho_{\rm s}(D) = \alpha_{\rm u} f_{\rm rim} D^{-1}$$

(frim is the degree of riming)

Snow fall velocity $V_t^{(s)} \sim D^{\gamma}$

Analysis of snow disdrometer data

Specific differential phase

$$K_{\rm DP} = \frac{0.27\pi}{\lambda \rho_i^2} \left(\frac{\varepsilon_{\rm i} - 1}{\varepsilon_{\rm i} + 2}\right)^2 F_{shape} F_{orinet} \int \rho_s^2(D) D^3 N(D) dD \sim M_{\rm F}$$

Z is proportional to the 4th moment of snow SD whereas KDP is proportional to its 1st moment

Number concentration

$$N_{\rm t} = \int N(D) dD \sim M_0$$

Z is proportional to the 4th moment of snow SD whereas N_t is proportional to its 0th moment

Shape factor

ž

킔

औ

 \approx

哭

둣칂

÷

X

 f_{rim} – riming degree, $F_0 \& F_s$ – particle orientation & shape parameters, μ – PSD shape parameter, $N_{\rm t}$ – number concentration, p – atmospheric pressure, λ – radar wavelength

ž

큉

्रौ

K)

哭

128

X

ď

 f_{rim} , $F_{o}F_{s}$, and N_{t} can be retrieved at ASOS stations – snowfall rate + extinction coefficient σ_{e} needed!

$$f_{\text{rimA}}(S_{\text{ASOS}}, \sigma_{\text{eASOS}}, Z, \mu) = const \times f_1(\mu) \frac{S_{\text{ASOS}}^a}{\sigma_{\text{eASOS}}^b Z^c}$$

Z, Kdp – radar
$$F_{o}F_{s} = F_{osA}(K_{DP}, Z, \sigma_{eASOS}, f_{rimA}, \mu) = const \times f_{2}(\mu) \frac{Z^{g}(K_{DP}\lambda)^{h}}{f_{rimA}^{i}\sigma_{eASOS}^{j}}$$

 $D_{\rm m} = f(f_{\rm rim}, \, \mu, \, \sigma_{\rm e}, \, Z) - mean \, volume \, diameter$

 $N_{\rm t} = 2f_3(\mu)\sigma_{\rm e}/(\pi D_{\rm m}^2)$

S, $\sigma_e - ASOS$

We can use ASOS measurements to directly evaluate "goodness" of our relations – how much the best possible radar estimate deviates from the ASOS measurements of S

ž

큉

虎

K)

哭

Ş

512

Ś

X

ď

Example of f_{rim} and F_o*F_s retrieval

Constant $F_0^*F_s$ factor deviates significantly from the retrieved $F_0^*F_s$, potentially introducing large biases.

ž

큉

虎

 \approx

哭

512

÷

X

ž

큉

虎

ĸ

哭

5 1 2 1 2 1 2 3

÷

X

Addition of dynamically estimated N_{t} , f_{rim} , F_{o} , and F_{s} introduces large improvement. Adjusting μ from 0 to -0.6 in Sopt.(Kdp, Z) provides even better results for this event.

ž

큉

虎

ĸ

哭

515 215

÷.

X

Addition of dynamically estimated *N*_t, f_{rim}, *F*_o, and *F*_s introduces large improvement. Adjusting μ from 0 to -0.4 in Sopt.(Kdp, Z) provides even better results for this event.

ž

큉

虎

ĸ

哭

51 S

÷

X

്റ

CIWRC

Addition of dynamically estimated $N_{\rm t}$, $f_{\rm rim}$, $F_{\rm o}$, and $F_{\rm s}$ introduces large improvement.

ž

큉

虎

x

哭

51 51 52 51 53

÷.

X

ď

CIWRC

Addition of dynamically estimated N_{t} , f_{rim} , F_{o} , and F_{s} introduces large improvement. Adjusting μ from 0 to -1 in Sopt.(Kdp, Z) provides even better results for this event.

ž

큉

्रौ

ĸ

哭

21 21 21

÷

X

ď

Addition of dynamically estimated $N_{\rm t}$, $f_{\rm rim}$, $F_{\rm o}$, and $F_{\rm s}$ introduces large improvement.

ž

큉

虎

 \approx

哭

51 Startes

÷

X

ď

CIWRC

Moving forward

3 paths

ž

큉

虎

x

哭

51<u>8</u>

÷

X

- Projection of polarimetric S estimates from DGL (-20°C to -10°C), where we have more reliable radar measurements of Kdp and estimates of N_t to the ground, using particle trajectories
- Using ASOS estimates of f_{rim} , F_oF_s , and N_t from S and extinction to learn how to optimally adjust the multipliers of proposed relations, and expand information spatially
- To use optimal S(Z) relation according to polarimetric classification (physically-based) instead of current regional dependence

References

ž

큉

虎

 \approx

Bukovčić, P., A. Ryzhkov, D. Zrnić, and G. Zhang, 2018: Polarimetric Radar Relations for Quantification of Snow Based on Disdrometer Data. *J. Appl. Meteor. Climatol.*, **57**, 103–120, https://doi.org/10.1175/JAMC-D-17-0090.1

Bukovčić, P., A. Ryzhkov, and D. Zrnić, 2020: Polarimetric relations for snow estimation – radar verification. *J. Appl. Meteor. Climatol.*, **59**, 991–1009, https://doi.org/10.1175/JAMC-D-19-0140.1

