Attenuation Correction for Melting Ice at C-Band and Verification from S-Band Profiler Radar Measurements

ABSTRACT

The decrease in power of the EM wave by scattering or absorption upon encountering hydrometeors in the propagation path is known as attenuation. Weather radars at C-Band can suffer from attenuation in severe convective storm. Therefore it is necessary to correct for attenuation in order to get accurate measurements. This work proposes a methodology to estimate the attenuation suffered by radar beams caused by the presence of melting ice in the propagation path. Melting ice could be a combination of snow, graupel, wet hail, and heavy rain in the mix-phase region developed during the riming process in a convective precipitation systems. Simultaneous observations from the C-Band ARMOR Radar and the NOAA Physical Science Laboratory (PSL) S-Band Profiler are used to measure and correct attenuation in melting Ice during a convective event over Huntsville, Alabama on December 11, 2021. Attenuation correction due to melting ice is challenging due to the variability in the size distribution and composition of melting ice [1]. First, rain attenuation correction based on differential phase measurements was performed on the C-Band observations. Upon comparison of vertical profiles of reflectivity to profiler observations, it was determined that rain attenuation correction alone is insufficient in accounting for the enhanced attenuation caused by melting ice hydrometeors. Consequently, profiles of Z, Z_{dr} and co-polar correlation coefficient were examined for signatures of melting ice. This was further cross validated with hydrometeor classification algorithm. Attenuation correction coefficient for melting ice is computed separately following a methodology proposed by [2]. Next, a piecewise attenuation correction algorithm is implemented to correct regions of rain and melting ice separately.

beamwig

Fig. 1a: A map showing the deployment location of the ground instruments in Alabama used in this study. The C-Band ARMOR radar is located at the Huntsville airport, while the S-Band profiler radar is deployed by NOAA at the Courtland (CTD) site. The yellow line represents a common azimuth of 272° and a distance of 52.57 km.

Fig. 1b shows the S-band profiler radar. Fig. 1c shows the C-Band ARMOR radar. Table 1 on the right side presents some important technical specifications and operating parameters of both instruments. Table 2 below | resolution shows the precise deployment locations of the instruments.

Site	Latitude	Longitude	Elevation (MSL)
ARMOR	34.6403° N	86.7756° W	186 m
CTD	34.6600 ° N	87.3500° W	187 m

40th Conference on Radar Meteorology

Adubi Tunde¹, Sounak Kumar Biswas^{1&2}, V. Chandrasekar¹, Robert Cifelli², and Ivan Arias Hernandez¹ (1) Colorado State University, Fort Collins, Colorado. (2) NOAA Physical Sciences Laboratory, Boulder, Colorado.

-			
Parameters	C-Band Radar	S-Band Radar	
Frequency (GHz)	5.625	2.875	
Scan Strategy	PPI and RHI scans	Vertically pointing scan	
Antenna beamwidth (deg.)	1	2.5	
Temporal resolution (min)	5	1	
Range resolution (m)	153	60	
Elevation (MSL)			

Fig. 1d is an illustration of the common volume of observation at the intersection of the C-Band ARMOR radar horizontal beam with the S-Band profiler radar vertical beam.

This work is supported by the NOAA Physical Sciences Laboratory (PSL).

> Case study at 12:08 UTC, When the squall line passed over the profiler location.

> Case study at 12:14 UTC, After the squall line passed over the profiler location.

Fig. 7a Shows the polarimetric measurements of reflectivity (Z), differential reflectivity (Z_{dr}), and copolar correlation coefficient (ρ_{hv}) signatures in the melting ice region between 44-50 km at 12:14 UTC. In this mix phased region, the C-band radar observables of Z and Z_{dr} had the highest values of about 56 dBZ and 3.5 dB respectively with a gradual decline in phy. Beyond this phase, a steady increase of about 0.99 in phv is observed followed by a corresponding negative Z_{dr} of -1.5 dB, a characteristic that could be of attenuation due to melting ice.

The presence of melting ice hydrometeors during the convective event, analyzed in this study, show

Attenuation correction considering only rain model is not sufficient to account for the enhanced attenuation

Attenuation correction is performed using a piecewise correction methodology considering rain and

> Comparisons of corrected reflectivity at C-Band with S-Band profiler radar measurements show good

[1] V. N. Bringi, G. Huang, P. May, K. Glasson, and T. Keenan, "The Estimation of X-Band Attenuation Due To Wet Ice in the Mixed Phase Region of [2] I. A. Hernandez and V. Chandrasekar, "Attenuation of Melting Ice at C-band Frequencies, Observed Attenuation of Melting Ice at C-band

[3] Bechini, Renzo, and V. Chandrasekar. "A semisupervised robust hydrometeor classification method for dual-polarization radar applications." [4] Wang, Yanting, and V. Chandrasekar. "Algorithm for estimation of the specific differential phase." Journal of Atmospheric and Oceanic

