

BACKGROUND AND MOTIVATION

- Weakly electrified clouds receive less attention than thunderstorms because they typically do not produce severe weather and are *not* associated with natural lightning
- Knowledge of electrification mechanisms and associated cloud processes in weakly electrified clouds is incomplete
- Methods to detect remotely the processes that lead to \bullet weakly electrified clouds are limited
- Weakly electrified clouds can be a **significant triggered lightning risk** for commercial aviation and space launch activities.

Lighting strike to lightning tower used to protect the Artemis 1 rocket preparing for launch at NASA KSC on August 27, 2022. Photo: NASA

- The **Eastern Range** is a Spaceport that supports rocket launches from Kennedy Space Center (KSC) and Cape Canaveral Space Force Station (CCSFS) in Florida.
- The 45th Weather Squadron utilizes a set of safety rules called the Lightning Launch Commit Criteria (LLCC) to help ensure safe launch operations at the Eastern Range.

OBJECTIVES

- To identify cloud conditions associated with the natural and triggered lightning threat (i.e., elevated electric fields not strong enough for natural lightning but sufficient to trigger breakdown when a conducting rocket + plume moves through cloud), the LLCC utilize
 - various observations (e.g., lightning, surface electric field, radar **reflectivity**) and **cloud types** (e.g., cumulus, attached and detached anvil, debris clouds, disturbed weather, **thick cloud layers**) relative to **temperature (T)** levels and cloud history thought to be associated with cloud electrification.
- Fill knowledge gaps with long-term goal of **increasing launch** availability while maintaining launch safety,
 - analyze radar reflectivity (Z) characteristics of weakly electrified clouds over Eastern Range
- Thick cloud layers (TCL) are one or more physically connected *layered clouds* with a total **vertical extent of** \geq **1.4 km** AND with *any part* at an altitude where $-20^{\circ}C \leq T \leq 0^{\circ}C$
- focus on TCL since are weakly electrified with triggered lightning potential, can delay or scrub launches, *especially during cool* season, and their electrification mechanisms are poorly understood

Polarimetric Radar Characteristics of Weakly Electrified Clouds over the Eastern Range

Lawrence D. Carey¹, Emma Koontz¹, and Kenneth L. Cummins² ¹The University of Alabama in Huntsville ²The University of Arizona

DATA AND METHODS

- Verified no lightning was present as detected by the Mesoscale Eastern Range Lightning Information Network (MERLIN), which uses VHF interferometry and LF magnetic direction finding/time-of-arrival techniques to detect and locate both intra-cloud and cloud-to-ground lightning
- Vertical component of the electrostatic field (E-field) at the surface as measured by Launch Pad Lightning Warning System (LPLWS), which is network of 31 field mills over KSC-CCSFS
- Radar reflectivity (Z, dBZ) characteristics of thick cloud layers (TCLs) over LPLWS using Melbourne (KMLB) Next Generation Weather Radar (NEXRAD), which is 48 km from KSC-CCSFS.
- Environmental temperature levels for TCL identification and cloud electrification inferences were obtained from the low-resolution Automated Meteorological **Profiling System (AMPS)** data available at the Eastern Range that was closest in time (usually within < 6 hours of the TCL event)
- KMLB reflectivity, LPLWS time series, AMPS and weather tower wind data were used to eliminate non-cloud sources of significant E-fields (e.g., noise, sunrise, surf effects)

Launch Pad Lightning Warning System (LPLWS)

LPLWS field mill sensor site locations over KSC CCSFS. Adapted from Handel et al. (2022)

THICK CLOUD LAYER (TCL): SUMMARY RESULTS

- Only 8 of 20 (40%) TCL associated with elevated electric field > 1000 V/m and hence triggered lightning potential
- And they had higher maximum reflectivity (> 20 dBZ), were thicker, and were often (5 of 8) associated with embedded Cumulus (Cu) or disturbed weather (e.g., deep stratiform) clouds
- 3 of 20 cases (15%) **TCL-only** with |electric field| > 1000 V/m
- > 20 dBZ (+/-) is necessary but not sufficient condition for elevated |electric field|, triggered lightning potential in TCL
 - LLCC TCL reflectivity exception allows launch for maximum radar reflectivity (MRR) < 7.5 dBZ but results suggest MRR < 20 dBZ +/might allow for more launch availability.

Vertical E-field at maximum magnitude versus maximum reflectivity at freezing level. TCL cases between horizontal dashed lines showed no notable E-field response to cloud (i.e., indistinguishable from fair weather E-field). TCL red/orange cases with significant E-fields were embedded with other cloud types. Two-TCL cases had marginal fields (i.e., between horizontal dashed and solid lines) Only 3 TCL-only cases associated with significant E-fields (above or below solid horizontal lines) while the rest were TCL + other cloud types (red/orange).

SUMMARY AND FUTURE WORK

ACKNOWLEDGEMENTS

- The 1st and 2nd authors received research support from the UAH RCEU program • We especially thank Dr. Sarah Stough (UAH ESSC) for Python code and programming support!

Poster #44

Out of 20 TCL cases studied, only 8 (40%) events produced |electric field| > 1000 V/m and only 3 of them (15% of total sample) were TCL-only with no other combined cloud types

All TCL cases with |electric field| > 1000 V/m were characterized by Max(Z) > 20 dBZ. The mixed cloud cases (TCL + Cu) and (TCL + disturbed weather) had some of the highest E-fields

Suggests MRR exception to the TCL LLCC rule could be raised from 7.5 dBZ to something higher (20 dBZ +/-?), providing increased launch availability, but need more TCL cases to assess safety of rule change

Only one TCL-only case had very strong negative E-fields and it had a low 0°C height and was closer to the ground (i.e., charge closer to ground). Two other TCL-only with strong fields had positive E-fields.

Future: *analyze MRR explicitly* and *dual-polarization (DP) fields*. QC of DP in TCL is big job!

• Research is supported by NASA KSC as part of 1st and 3rd authors' participation on NASA KSC Lightning Advisory Panel (LAP)