Radars detect most severe weather threats, but see little of their cause,

limiting radar-based NWP while making threat nowcasting easy.

Radar cannot do it alone: Supporting material
Fundamental limits of covariance-based DA at storm scales
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We have tried several new approaches to improve radar data DA in order to fight this limitation, including:
 Multi-scale DA
* Grafting/Bogussing storms
* Assimilating trends / tendencies Scan QR code
* Assimilating future rainfall for details
* Momentum nudging

Frequent assimilation collapses error correlations R, reducing their ability to correct unobserved fields.

Context: A perfect observation (ha!) reduces the error on an unobserved quantity by 1 — v1 — R2:
A correlation of £0.5 leads to a 13% error reduction; a 50% error reduction requires a correlation of £0.87.
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However, gains remain marginal as storm dynamics remains misrepresented. 30 em— TR — R 30
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Sobering conclusions:

1) Radar-dominated DA struggles at constraining supporting fields needed by NWP;

2) However, radars detecting most threats (heavy rain, hail, strong winds...), rule-based nowcasting (imposed or ) . . P

learned) can more easily take advantage of time continuity and clear pattern-based associations (e.g., weak echo

regions, kidney signatures, VIL, ...). Tiny correlation growth
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this will remain so for a long time: Radar-dominated DA cannot do it alone. 0.00 0.05 =
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