
AMERICAN METEOROLOGICAL SOCIETY - 40TH CONFERENCE ON RADAR METEOROLOGY 

 

1 

 

A Composite Method of Rainfall Rates for a Multi-Parameter Phased 
Array Weather Radar and XRAIN using Machine Learning 

 
Shota Ochi1, Noritsugu Shiokawa1, Yoshimasa Egashira1, Masakazu Wada1,  

Tetsuya Kobayashi2, Tadashi Yamada3 

 
1TOSHIBA Corporation, Tokyo, Japan 
2TOSHIBA Infrastructure Systems & Solutions Corporation, Kanagawa, Japan  
3Chuo University, Tokyo, Japan 
 

1. Introduction 

 
As part of its activities in the Strategic Innovation 

Program, Toshiba has developed X-band multi-
parameter phased array weather radar (MP-PAWR) 
capable of high-speed three-dimensional 
observations by electrical scanning in the elevation 
direction using a phased-array technique and 
mechanical scanning in the azimuth direction. The 
terms "multi-parameter" and "MP" mean dual-
polarization. The MP-PAWR is expected to enable 
rapid detection of severe weather events such as 
torrential rains and tornados. 

Obtaining accurate rainfall rate data over wide 
areas requires composite rainfall rate data from 
multiple radars because single-radar observations 
have limitation in range, their accuracy deteriorates 
due to rainfall attenuation, and buildings or 
topography can create blank areas. There is thus a 
need for composite methods where rainfall rates are 
obtained from MP-PAWR alongside other radars. 
Conventional radars in Japan include the X- and C-
band parabolic dual-polarization radars that 
comprise the Ministry of Land, Infrastructure, 
Transport and Tourism’s eXtended RAdar 
Information Network (XRAIN). The objective of this 
study was to improve the accuracy of rainfall rates by 
generating composite rainfall rate data from MP-
PAWR data and XRAIN composite data. Assuming 
raw observation data from all radars that comprise 
XRAIN are unavailable to an MP-PAWR operator, we 
propose a machine learning-based method to 
selectively composite MP-PAWR data and XRAIN 
composite data. MP-PAWR and XRAIN composite 
data accuracy depends on the observations and 
weather conditions, so we use 17 features 
representing the MP-PAWR and XRAIN observation 
conditions and weather conditions as input to the 
machine learning model. 

We used data from the MP-PAWR installed at 
Saitama University (Figure 1) and actual XRAIN 
composite data to generate composite rainfall rates. 
We evaluated the accuracy of the composite rainfall 

rate data using true values obtained from rain 
gauges. 

 

 
MP-PAWR antenna (left) and the MP-PAWR radome 
installed at Saitama University (right). (Adapted from 
Takahashi et al. [1])  
 

2. The Proposed Composite Method 
 

2.1 Concept 
 

 
Figure 2. Concept of the proposed composite 
method. 
 

Figure 2 shows the concept of the proposed 
composite method, which selectively composites 
MP-PAWR data and XRAIN composite data on 
Cartesian axes of latitude and longitude with a 
horizontal resolution of about 250 m. The selection is 
made by a gradient boosting decision tree (GBDT) 
model, which is a machine learning model that uses 
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17 features to estimate which of MP-PAWR data or 
XRAIN composite data are closer to the actual 
ground rainfall. Those features, representing the MP-
PAWR and XRAIN observation conditions and 
weather conditions, are generated from MP-PAWR, 
XRAIN composite, and MSM data. Section 2.2 
describes these source data, and Section 2.3 
describes the features. 

 
 

2.2 Data Description 
 

This section describes the data used in this study. 
As mentioned above, we used three data types 

(MP-PAWR, XRAIN composite, and MSM data) to 
generate the 17 features for input to the GBDT 
model. MP-PAWR data were obtained from the MP-
PAWR installed at Saitama University. XRAIN 
composite data are composite ground rainfall rates 
from XRAIN X- and C-band dual-polarization radars. 
MSM data are numerical weather prediction data 
using the Japan Meteorological Agency (JMA) meso-
scale model. 

We also used data obtained from rain gauges of the 
Automated Meteorological Data Acquisition System 
(AMeDAS), a JMA meteorological observation 
system, to train the GBDT model and evaluate the 
composite rainfall rate data. Specifically, we used 
data obtained from 41 AMeDAS rain gauges in the 
MP-PAWR observation area. 

Table 1 describes the MP-PAWR, XRAIN 
composite, and MSM data, along with AMeDAS rain 
gauge data. Figure 3 shows the locations of the MP-

PAWR at Saitama University, the X-band dual-
poralization radars (X-MP radars) of XRAIN near the 
MP-PAWR, and the AMeDAS rain gauges in the MP-
PAWR range. 
 

 
Figure 3. Locations of MP-PAWR, XRAIN X-MP 
radars, and AMeDAS rain gauges. 
 

 
Table 1. Description of Data Used in This Study 

Data Description 

MP-PAWR 
Data 

Data obtained from the MP-PAWR Installed at Saitama University 
⚫ Obs. range: 80km (data within 60 km used in this study) 
⚫ Obs. Azimuth: 360 deg. 
⚫ Obs. Elevation: 0 – 90 deg. 
⚫ Range resolution: 150 m 
⚫ Azimuth beamwidth: < 1.2 deg.  
⚫ Temporal resolution: 30 seconds 

XRAIN 
Composite 
Data 

Composite rainfall rate data of X-band and C-band dual-polarization radars of XRAIN 
⚫ Horizontal resolution: about 250 m 
⚫ Temporal resolution: 1 minute 

MSM Data 

NWP data using the Meso-Scale Model by JMA 
⚫ Horizontal resolution: 5 km 
⚫ Altitudes: surface and 16 pressure levels (from 1000hPa to 100hPa, including 850hPa and 700hPa) 
⚫ Initial time: every 3 hours including 12:00 UTC (6 times a day) 
⚫ Delivered time: each initial time + 2.5 hours 
⚫ Forecast time interval: 1 hour (surface), 3 hours (pressure level) 
Note that the information above is about the specifications of the data those forecast time until 39 
hours. 

AMeDAS 
Rain Gauge 
Data 

Data obtained from the rain gauges of Automated Meteorological Data Acquisition System (AMeDAS) 
which is a JMA meteorological observation system 
⚫ Rainfall resolution: 0.5 mm 
⚫ Temporal resolution: 10 minutes and 1 hour (1 hour data used in this study) 
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2.3 Features 
 

This section describes the 17 features of the GBDT 
model inputs. We selected these features through 
trial and error to obtain a trained GBDT model with 
high generalization performance for various rainfall 
cases. 
 
Four Features Associated with MP-PAWR Data 

We generated four features associated with MP-
PAWR data: rainfall rate, KDP ratio, path-integrated 
attenuation (PIA), and distance between MP-PAWR 
and each grid point of the composite rainfall rate 
data. These features represent the MP-PAWR 
observation conditions.  

Figure 4 shows the steps for generating the rainfall 
rate, KDP ratio, and PIA. 

 
 

 
Figure 4. Method to generate three features from MP-
PAWR data. 

 
First, we generate the rainfall rate, a label 

representing the parameter used for rainfall rate 
estimation, and PIA in polar coordinates. Here, we 
calculate the MP-PAWR rainfall rate using the same 
rainfall rate estimation method as XRAIN [2]. This 
method calculates the rainfall rate from either radar 
reflectivity (Z [dBZ]) or the rate of change in distance 
in phase difference between polarizations [◦/km], 
called KDP depending on the observation conditions. 
KDP rainfall rates are generally more accurate than 
Z-calculated rates. Therefore, the label representing 
the parameter used for rainfall rate estimation (0 
representing Z, 1 representing KDP) is a feature that 

represents the rainfall rate quality. PIA is calculated 
from KDP using the XRAIN method [3]. 

Next, we transform the rainfall rate, the label 
representing the rainfall rate estimation parameter, 
and PIA from polar to Cartesian longitude, latitude, 
and altitude coordinates by Cressman interpolation. 
The horizontal grid resolution is approximately 250 
m, the same as XRAIN composite data and the 
generated composite data, while the vertical grid is 
set at 100 m intervals for altitudes between 500 and 
1000 m and at 250 m intervals for altitudes between 
1250 and 5250 m. The KDP ratio is obtained by 
transforming the label representing the rainfall rate 
estimation parameters to Cartesian grid points. The 
KDP ratio, a value between 0 and 1, indicates how 
much of the rainfall rate at each Cartesian grid point 
is attributed to the rainfall rate calculated by KDP. 
The closer the KDP ratio is to 1, the greater the 
attribution by KDP, and the closer it is to 0, the 
greater the attribution by Z. 

Finally, we extract vertical grid data closest to the 
observation altitude with the highest correlation with 
ground rainfall (the optimum observation altitude; 
identified in a previous analysis) at each horizontal 
grid point. 
 
Four Features Associated with XRAIN Composite 
Data 

We generated four features associated with XRAIN 
composite data: the rainfall rate, the average 
distance between five X-MP radars near the MP-
PAWR (KANTOU, SHINYOKO, FUNABASHI, 
YATTAJIMA, and UJIIE) and the grid point of the 
composite rainfall rate data, and the average of the 
rainfall rate and the percentage of grid points with 
observed rainfall in a 120 × 120 km area centered on 
the MP-PAWR at Saitama University. These features 
represent the XRAIN observation conditions and 
area rainfall distribution. 
 
One Feature Generated from MP-PAWR Data and 
XRAIN Composite Data 

We generated the difference between the rainfall 
rates of MP-PAWR and XRAIN composite data as a 
feature.  
 
Eight Features Generated from MSM Data 

We selected or generated eight features from MSM 
data. From surface data, we selected low cloud 
cover, horizontal wind velocity, and pressure. We 
selected vertical velocity from 700-hPa level data. 
We also generated difference values for 850 and 
700-hPa levels of relative humidity, temperature, 
vertical velocity, and horizontal wind velocity. These 
features represent weather conditions that might be 
useful for generating a model that considers rainfall 



AMERICAN METEOROLOGICAL SOCIETY - 40TH CONFERENCE ON RADAR METEOROLOGY 

 

4 

 

types (convective rainfall, typhoons, stratiform 
rainfall, etc.). We considered the following points 
when generating these features: 

 
⚫ Applicability to real-time processing  

As MSM data are delivered at the initial time + 2.5 
h, we used predicted data after the initial time + 3 
h with a 30-min margin. We generate features for 
each time point by linear interpolation of the 
predictions before and after each time point in the 
time direction. 
 

⚫ Consideration of misalignment risk 

We used averaged data over a 55 × 55 km area 
centered on the MSM data grid point closest to 
each composite rainfall rate grid point at the 
center. 
 

3. Training and Evaluation Method 
 

3.1 Dataset 
 

We used data comprising 461 h between July and 
October each year from 2019 to 2022, including 
various rainfall cases. This dataset contained only 
data where the AMeDAS rain gauges observed 
hourly rainfall of at least 0.5 mm. To increase the 
number of evaluation cases while reducing the data 
used for training as little as possible, we divided 
training and evaluation datasets into two groups. 
Table 2 shows the evaluation cases for each group. 
Each group has three evaluation cases: convective 
rainfall, typhoon, and stratiform rainfall. For each 
group, the trained GBDT model was generated from 
data excluding the evaluation cases of each group. 
The training data consisted of 415 h for Group 1 and 
413 h for Group 2. 
 

Table 2. Evaluation Cases. 

Group Type Period 
Number 
of data  

1 

Convective 
2020/08/12 

11:00 - 20:00 
62 

Typhoon 
2019/10/12 

00:00 - 24:00 
815 

Stratiform 
2019/10/29 

06:00 - 19:00 
314 

2 

Convective 
2020/08/22 

16:00 - 24:00 
27 

Typhoon 
2019/09/08 02:00 

- 2019/09/09 09:00 
435 

Stratiform 
2020/10/17 

10:00 - 23:00 
487 

 

 

 

3.2 Training Method 
 
We used LightGBM [4] as the GBDT model 

implementation. The training label represents MP-
PAWR data or XRAIN composite data, whichever 
has the smaller absolute error relative to hourly 
rainfall as obtained from the rain gauges. We used 
hourly average rainfall rates in the MP-PAWR data 
and XRAIN composite data to match the sampling 
frequency of the rain gauges. We also used hourly 
averages of each feature except KDP ratios in the 
training process. For KDP ratios, we used the value 
𝑟KDP_hour  calculated by Equation (1), with hourly 

features representing the contribution of the KDP-
calculated rainfall rate to hourly rainfall. In Equation 
(1), n is the number of hourly samples, Rr is the 
rainfall rate in each data sample, and 𝑟KDP is the KDP 
ratio in each data sample. 

 

 

𝑟KDP_hour =
∑ 𝑅𝑟(𝑘) ∗ 𝑟KDP(𝑘)
𝑛
𝑘=0

∑ 𝑅𝑟(𝑘) 𝑛
𝑘=0

(1) 

 
 

3.3 Evaluation Method 
 
We performed evaluations under some operational 

assumptions. Specifically, we generated the 
composite rainfall rate for every minute using by-
minute features, then evaluated hourly averages of 
composite rainfall rate data using the root mean 
square error (RMSE) with hourly rainfall obtained 
from the AMeDAS rain gauges as true values. We 
calculated the RMSE using Equation (2), where A 
[mm/h] is the hourly rainfall obtained from the 
AMeDAS rain gauges, R [mm/h] is the hourly 
average in the evaluated rainfall rate data, and N is 
the number of data. 
 
 

RMSE = √
1

𝑁
∑(𝑅𝑖 − 𝐴𝑖)

2

𝑁

𝑖=1

(2) 
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4. Evaluation Results 
 

4.1 Accuracy 
Table 3 shows the RMSE of rainfall rates in the 

XRAIN composite data, MP-PAWR data, the 
composite data generated by the maximum method 
(Max.), which selects the maximum value from MP-
PAWR data and XRAIN composite data (the “Max 
method”), and the composite data generated by the 
proposed method. Here, we evaluated the Max 
method as an example of a simple composite 
method. Figure 5 shows the RMSE ratio for each 
rainfall rate data to the RMSE of XRAIN composite 
data shown in Table 3. Note that the RMSE of MP-
PAWR data is inferior to that of XRAIN composite 
data because MP-PAWR data are single radar 
observations, while XRAIN composite data are 
composites from many X- and C-band dual-
polarization radars at least five radars near the MP-
PAWR shown in Figure 2. 

In Group 1 in Figure 5(a), the RMSE of the 
composite rainfall rate generated by the Max method 
is worse than the XRAIN composite data for the 
convective and stratiform rainfall cases. By contrast, 
the proposed method generated composite rainfall 
rate data more accurate than the XRAIN composite 
data in all cases. Specifically, the composite rainfall 
rate data generated by the proposed method 
improves RMSE by 13% for convective rainfall, 3% 
for typhoons, and 18% for stratiform rainfall, as 
compared to XRAIN composite data.  

Similarly, in Group 2 in Figure 5(b), the RMSE of 
the composite rainfall rate generated by the Max 
method was worse than XRAIN composite data for 
all three cases, and the RMSE of the composite 
rainfall rate generated by the proposed method 
improves over the XRAIN composite data in all three 
cases. The improvement ratios are 13% for 
convective rainfall, 2% for typhoons, and 16% for 
stratiform rainfall. 

The above confirms that the proposed method can 
generate composite rainfall rates from MP-PAWR 
data and XRAIN composite data that are more 
accurate than either alone. 
 

 
 

Figure 5. RMSE ratios compared to XRAIN 
composite data. 
 

 

Table 3. RMSE of XRAIN composite data, MP-PAWR data, and composite rainfall rate data,  
as generated by the Max method and the proposed method. 

Group Type 
Before Composite Composite data 

XRAIN composite  MP-PAWR  Max. method Proposed method 

1 

Convective 6.17 8.98 8.12 5.34 

Typhoon 5.75 8.92 5.51 5.57 

Stratiform 1.92 2.67 2.68 1.57 

2 

Convective 8.38 9.38 11.6 7.26 

Typhoon 3.48 5.76 3.96 3.42 

Stratiform 2.61 3.34 3.54 2.18 
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4.2 Feature Importance 
 

To analyze the behavior of the trained GBDT 
models, we confirmed the feature importance of each 
trained GBDT model. Table 4 shows the feature 
importance of the trained GBDT models for each 
group. In both groups, the sum of feature importance 
representing the MP-PAWR and XRAIN observation 
conditions (Nos. 1–6 and 9) was about 47%, while 
the sum of feature importance representing weather 
conditions (Nos. 7, 8, and 10–17) was about 53%. 
These results indicate that the trained GBDT models 
select MP-PAWR or XRAIN with consideration of 
both radar observation and weather conditions. 

 
 
 
 
 
 
 

4.3 Composite Rainfall Rate Map 
 

Figure 6 shows the rainfall rate map of XRAIN 
composite data, MP-PAWR data, and the composite 
rainfall rate data generated by the proposed method 
in a typhoon case (2019/10/12, 15:00) in Group 1 as 
an example. Here, missing areas and areas outside 
the MP-PAWR observation range were simply filled 
in with XRAIN composite data in Figure 6(c). 

Figure 6(c) shows that MP-PAWR data are selected 
more in the strong rainfall area near the MP-PAWR, 
while XRAIN data are selected in other areas, 
including accuracy deteriorated areas due to rainfall 
attenuation of the MP-PAWR. We can also see that 
the MP-PAWR observations are partly reflected in 
the strong rainfall area in the upper right area. In 
cases where strong rainfall occurs over a wide area, 
such as during typhoons, the rainfall rate tends to be 
underestimated due to the large rainfall attenuation, 
and we assume that the trained GBDT models select 
larger rainfall rates in such cases. 

 
 

Table 4. Feature Importance 

No. Category Feature 
Importance [%] 

Group1 Group2 

1 

MP-PAWR Data 

Rainfall rate [mm/h] 7.2 6.9 

2 KDP ratio 5.4 4.1 

3 Path Integrated Attenuation [dB] 5.4 4.3 

4 Distance between radar site and grid-point [km] 3.1 2.9 

5 

XRAIN Composite Data 

Rainfall rate [mm/h] 7.2 7.8 

6 
Average distance between each X-band radar site 
and grid-point [km] 

4.5 4.0 

7 Average of rainfall rate [mm/h] 4.2 3.4 

8 Ratio of grid points where rainfall was observed 3.7 4.7 

9 
MP-PAWR Data and  
XRAIN Composite Data 

Difference value between rainfall rate of MP-PAWR 
data and XRAIN composite data [mm/h] 

14.4 17.1 

10 

MSM Data 
 (Surface) 

Low cloud cover [%] 7.2 7.8 

11 Horizontal wind velocity [m/s] 3.3 4.1 

12 Pressure [Pa] 5.4 5.7 

13 
MSM Data 
 (700hPa level) 

Vertical velocity [Pa/s]  6.4 5.7 

14 

MSM Data  
(Difference value of 850hPa 
level and 700hPa level) 

Relative humidity [%] 5.8 4.9 

15 Temperature [K] 5.7 6.5 

16 Vertical velocity [Pa/s] 5.1 5.0 

17 Horizontal wind velocity [m/s]  5.7 5.1 
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Figure 6. Example maps of XRAIN composite data, 
MP-PAWR data, and composite rainfall rate data 
generated by the proposed method. 
 

 

5. Conclusion 
 
We proposed a new rainfall composite method that 

aims to generate composite rainfall data from MP-
PAWR data and XRAIN composite data that are 
more accurate than both. The proposed method 
selectively composites MP-PAWR data and XRAIN 
composite data on Cartesian latitude and longitude 
axes using the GBDT model, which estimates 
whether MP-PAWR data or XRAIN composite data 
are closer to actual ground rainfall. The method uses 
17 features representing the MP-PAWR and XRAIN 
observation conditions and weather conditions, as 
input to the machine learning model.  

We found composite rainfall rates generated by the 
proposed method to be more accurate than XRAIN 
composite data and MP-PAWR data in all six 
evaluated cases, with RMSE accuracy 
improvements of 2–18% over XRAIN composite 
data. A feature importance analysis of the trained 
GBDT models indicated that the trained GBDT 
models select MP-PAWR data or XRAIN composite 
data considering both radar observation and weather 
conditions.  
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