Results show that joint assimilation of WP and radar data produces a better analysis of convective dynamical structure than joint assimilation of DWL and radar data, since WP detects deeper layer winds. Joint assimilation of MWR and radar data enables rapid adjustment of temperature and humidity and thus, avoids the potential errors introduced by the latent heat term of the radar diabatic initialization in the early stage. Profiling observations in a horizontal spacing of 80 km provide fewer benefits for convective forecasting, while reducing the spacing to 40 km can dramatically improve model analysis and forecasts. Joint assimilation of multiple profiling observations in a 20 km horizontal spacing with radar data exhibits a beneficial synergistic effect and mitigates "the ramp-down issue" during the forecast stage. Assimilating profiling observations with an update interval less than 30 mins does not have pronounced an effect on convective forecasts. Furthermore, assimilating profiling observations at a 20 km horizontal spacing can obtain accurate mesoscale background environment and forecast storms with an ability comparable to radar data assimilation.
- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner