
5.4 SMALL POLYGON COMPRESSION FOR INTEGER COORDINATES

Abhinav Jauhri, Martin Griss & Hakan Erdogmus∗

Carnegie Mellon University, Moffett Field, California

ABSTRACT
We describe several polygon compression techniques to
enable efficient transmission of polygons representing ge-
ographical targets. The main application is to embed
compressed polygons to emergency alert messages that
have strict length restrictions, as in the case of Wireless
Emergency Alert messages. We are able to compress
polygons to between 9.7% and 23.6% of original length,
depending on characteristics of the specific polygons, re-
ducing original polygon lengths from 43-331 characters
to 8-55 characters. The best techniques apply several
heuristics to perform initial compression, and then other
algorithmic techniques, including higher base encoding.
Further, these methods are respectful of computation
and storage constraints typical of cell phones. Two of
the best techniques include a “bignum” quadratic combi-
nation of integer coordinates and a variable length encod-
ing, which takes advantage of a strongly skewed polygon
coordinate distribution. Both techniques applied to one
of two “delta” representations of polygons are on aver-
age able to reduce the size of polygons by some 80%. A
repeated substring dictionary can provide further com-
pression, and a merger of these techniques into a “polyal-
gorithm” can also provide additional improvements.

1. INTRODUCTION
Geo-targeting is widely used on the Internet to better

target users with advertisements, multimedia content,
and essentially to improve the user experience. Such in-
formation helps in marketing brands and increasing user
engagement. Scenarios also exist where geo-targeting
at a given time becomes imperative for specific sets of
people for information exchange, thereby contributing to
problems of network congestion and effectiveness. Emer-
gency scenarios are a quintessential example where peo-
ple in the affected area need to be informed and guided
throughout the duration of an emergency. To address
this, Wireless Emergency Alerts (WEA) is a nation-wide
system for broadcasting short messages1 (currently 90
characters, similar to SMS messages) to all phones in a
designated geographic area via activation of appropriate
cell towers. The area is typically identified by a poly-

∗Corresponding author address: Abhinav Jauhri,
Carnegie Mellon University, ECE Department, Moffett
Field, CA 94035; email: ajauhri@cmu.edu
1https://www.fema.gov/wireless-emergency-alerts

gon, though currently many operators use rather coarse-
grained targeting (such as to a whole county).

Our research group has developed and evaluated im-
proved geo-targeting technology. For testing purposes,
we ran trials of the new system, called by us WEA+.
We are using SMS (and WiFi) to simulate cell broadcast,
and also have on campus an experimental cell system,
CROSSMobile [10], that supports true cell broadcast on
an unused GSM frequency to cell phones with a special
SIM card.

In order to do this, we included some compressed poly-
gon representation as part of the short message text,
expected to be feasible in both current 90 WEA char-
acter messages and even more effective in future imple-
mentations of WEA that allow longer messages, or use
multiple messages. We have available to us a corpus of
11,370 WEA messages sent out by the National Weather
Service (NWS) [13]2. The polygons in the NWS corpus
range from 4-24 points, with a size ranging from 43-331
characters. Since WEA messages are broadcast to thou-
sands of people, and it is believed that adding a polygon
to more precisely define the target area is critical, it is es-
sential to be able to compress typical WEA polygons to
fit within the current or anticipated future WEA message
length, leaving room for meaning text as well. In this pa-
per, we explore several ways of substantially compressing
such polygons using heuristics and standard algorithms.
Our techniques provide better compression for almost all
polygons in the corpus than standard algorithms.

The compression problem we are tackling here is quite
different from that described in most other published re-
search on polygon compression [1,6]. They typically are
dealing with a large number of inter-connected polygons
in a 2D or 3D representation of a surface or solid, and
thus are compressing a large number of polygons at the
same time. Many of these polygons share common points
and edges, which can be exploited in the compression; in
our case, we have a single, relatively small polygon to
compress, and so can not amortize items such as a dic-
tionary of common points.

In designing our techniques, we have looked at the typ-
ical distribution of coordinate values, polygon sizes and
character string length of original uncompressed poly-
gons, shown in Figures 2a and 2b. Many of these charac-

2These messages were sent out by the NWS in 2012,
2013, and through December, 2014

1

https://www.fema.gov/wireless-emergency-alerts

Figure 1: A map showing 3 polygons (yellow border). The NWS dataset has both convex and non-convex polygons

teristics have motivated our transformations of the orig-
inal polygon.

In the NWS corpus the observed range of GPS coor-
dinates, covering a significant portion of the USA, is:

(X,Y) = (17.67,−159.32) to (48.84,−64.56)

We use three types of transformations on the numeric
strings representing a polygon. The first group exploits
heuristics, redundancies and patterns in the GPS coordi-
nates, substantially simplifying and reducing the number
of numeric characters in most polygon coordinates. The
next set of transformations encodes the now simplified
coordinates in a higher base, B, such as all alpha-numeric
characters, and then applies arithmetic and character
string operations to further compress each polygon. The
final set of transformations uses the statistical nature
of the entire set of polygons to further compress some
polygons.

We evaluated our corpus of polygons with combina-
tions of the following compression techniques:

1. Purely heuristic, using deltas and fixed or variable
length fields

2. Encoding in a higher base

3. Using a repeated substring dictionary to replace
most frequent occurring substrings

4. Arithmetic operations to combine values

5. Arithmetic encoding, an entropy based compres-
sion technique

6. Other standard algorithms - LZW [12], 7zip, gzip,
Huffman [9] and Golomb [8]

A key constraint is to compress the polygon into a
string of characters that are acceptable via SMS or cell
broadcast and specifically to the gateways we use to send
an SMS via email for our pilot trials. To compress the
set of decimals (or bits) representing GPS coordinates,
we use a base B representation, avoiding characters that
are questionable. This is discussed further in the practi-
cal considerations section. Base B = 62 is a convenient
choice since it uses only alphanumeric characters [0-9a-
zA-Z]. Using a higher base such as B = 70 or B = 90
uses more characters and will improve the overall com-
pression, and changes the trade-off between techniques.
Briefly, our paper explores numerous techniques of com-
pression on different transformations, or manipulations
to the original polygon.

2. HEURISTIC APPROACHES
We have combined several heuristics, motivated by

analysis and discovered experimentally to work well. The
following describes our current techniques. We start with
an original N point polygon, given as an ordered finite
sequence in R2:

O = [X1, Y1, . . . , XN , YN]

where Xi, Yi are GPS coordinates in decimal degrees.
In the NWS corpus, N ∈ [4, 24], even though the NWS

standard allows polygons of up to 100 points. The origi-
nal uncompressed polygon length of 43 to 331 characters
includes 2N − 1 separating commas, 2N periods and N
minus signs. Since Xi is typically dd.dd and Yi is typi-
cally −dd.dd or −ddd.dd, the total length of the original
polygon string O is:

2

(a) Distribution of polygon vertices (b) Distribution of original polygon lengths

Figure 2: Distribution of NWS data

len(O) <= 4N︸︷︷︸
Xi

+ 5N︸︷︷︸
Yi

+ 2N − 1︸ ︷︷ ︸
commas

+ 2N︸︷︷︸
periods

+ N︸︷︷︸
minuses

<= 14N − 1

(1)

There are several steps we take to successively com-
press the polygon. Initially we perform three simplifi-
cations and transformations to the original set of coor-
dinates O. The first transformation converts all coordi-
nates to positive integers to yield, O′. The second finds
the minimum x-coordinate and y-coordinate and takes
the difference with every vertex (T∆min). The third
transformation considers the difference of consecutive co-
ordinates (T∆).

Step 1: Starting with polygon O, round all numbers to
2 (or 3) decimals precision, convert to integers
to drop the decimal point, and switch sign of Yi

in USA, so both Xi and Yi are positive integers,
to produce O′ 3:

Xi = int(100 ∗Xi);Yi = −int(100 ∗ Yi)

Outputting these with 2N − 1 separating com-
mas gives a length of at most 11N−1 characters
as opposed to the original 14N −1 (refer Eq. 1).

Step 2: Compute Xmin = infiXi, Ymin = infi Yi.

Step 3: Compute deltas for all coordinates:

dXi = Xi −Xmin

dYi = Yi − Ymin

where dXi and dYi are non-negative integers.

3Following Mike Gerber of the NWS [7]

Step 4: Compute deltas for Xmin and Ymin from a cho-
sen “origin”, origin (X0, Y0):

dXmin = Xmin −X0

dYmin = Ymin − Y0

We found (1600, 6000) most effective (see Fig-
ures 4a and 4b).

Step 5: Since these are closed polygons, drop the last
point (XN , YN) which is a duplicate of the first
point, producing a shorter set of coordinates:

T∆min = [dXmin, dYmin, dX1, dY1, . . . ,

. . . , dXN−1, dYN−1]

Steps for the second transformation T∆ are very sim-
ilar:

Step 1: Round all numbers to 2 (or 3) decimals precision,
convert to integers to drop the decimal point,
and switch signs for Yi:

Xi = int(100 ∗Xi);Yi = −int(100 ∗ Yi)

Step 2: Compute deltas for all coordinates:

∆Xi+1 = Xi+1 −Xi

∆Yi+1 = Yi+1 − Yi

Step 3: Compute deltas for X1 and Y1 from a the chosen
“origin”, (X0, Y0) :

δX1 = X1 −X0

δY1 = Y1 − Y0

Here again we used (1600, 6000) as “origin”.

3

(a) skewness = 1.63; kurtosis = 1.42
dXi ∈ [1, 327]

(b) skewness = 2.08; kurtosis = 5.34
dYi ∈ [1, 325]

(c) skewness = 4.34; kurtosis = 21.17
∆Xi ∈ [1, 361]

(d) skewness = 5.2; kurtosis = 31.56
∆Yi ∈ [1, 524]

Figure 3: Positive skewness in the deltas dXi(3a) and dYi(3b). Heavy tails and peakedness define positive
kurtosis [3]. kurtosis = 85.25 and 139.76 for dXi and dYi respectively if 14354 cases where dXi = 0 and 13838 cases
where dYi = 0 are included. Kurtosis not very high with inclusion of ∆Xi = 0 and ∆Yi = 0 since their distributions

have uniform fall off.

Step 4: Many of the ∆s are negative integers which causes
problems for the compression techniques discussed
below. Therefore, every ∆Xi or ∆Yi element e
will be converted as follows:

e =

{
2e, if e >= 0

−2e− 1, if e < 0

Step 5: Drop the last point (XN , YN) which is a dupli-
cate of the first point, producing a shorter set of
coordinates:

T∆ = [δX1, δY1,∆X2,∆Y2, . . . ,∆XN−1,∆YN−1]

.

Note that in addition to dropping the last point, we
also save an additional point, since we start from δX1

and δY1 rather than the additional Xmin, Ymin in the
T∆min transformation. This form is particularly inter-
esting, since the distribution of its ∆Xi has a skewed but
less peaked shape to that of the dXi in T∆min, but with
a longer tail (See Figure 3).

These heuristics already produce a substantial com-
pression because of the limited ranges and skewed distri-
bution of the delta polygon coordinates (dXi, dYi), and
(∆Xi, ∆Yi) and of the starting points (dXmin, dYmin),
and (δX1, δY1), shown in Figures 3, 4. While the ef-
fectiveness of the various compression techniques work
well because of these range and skew characteristics,
many of the techniques are not strongly dependent on
the specifics, and thus many would work well even for a
somewhat different set of polygons.

It is important to note that in both forms of the delta
transformations T we have two different sets of integers
to compress, with distinctly different ranges and distri-
butions: the single starting point pair of dXmin and
dYmin for T∆min (or δX1 and δY1 for T∆) and the N−1
pairs dXi, dYi for T∆min (or N − 2 pairs ∆Xi and ∆Yi

for T∆). We will thus treat them separately to get the
best results.

As we shall see, for the NWS corpus two of the tech-
niques are best, but we describe several others and the
sub-transformations since some of these might perform
better for other sets of polygons.

4

As a very first step to compress polygon, T∆min or T∆

could be directly encoded as a comma-delimited string:

T∆min
c = dXmin•, •dYmin•, •dX1•,

• dY1•, • . . . • dXN−1•, •dYN−1 (2)

T∆
c = δX1•, •δY1•, •∆X2•,

•∆Y2•, • . . . •∆XN−2•, •∆YN−2 (3)

Symbol • is used to denote string concatenation. Fig-
ure 5 shows the distribution of lengths using this trans-
formation. Since all deltas, dXi, dYi are less than 350,
(and ∆Xi, ∆Yi are less than 550) each of these deltas
can be encoded in at most three decimal digits, ddd,
while dXmin or δX1 will take at most four digits, dddd,
and dYmin or δY1 at most five digits, ddddd. The lower
bound on the length of T∆min

c is thus:

len(T∆min
c) >= 1︸︷︷︸

dXmin

+ 1︸︷︷︸
dYmin

+ (N − 1)︸ ︷︷ ︸
dXi

+ (N − 1)︸ ︷︷ ︸
dYi

+ 2N − 1︸ ︷︷ ︸
commas

>= 4N − 1
(4)

and 4N − 5 for T∆
c , though it is very rare in the NWS

corpus for dXmin and dXmin to be encodable in a single
digit.

The upper bound on the length of T∆min
c is:

len(T∆min
c) <= 4︸︷︷︸

dXmin

+ 5︸︷︷︸
dYmin

+ 3(N − 1)︸ ︷︷ ︸
dXi

+ 3(N − 1)︸ ︷︷ ︸
dYi

+ 2N − 1︸ ︷︷ ︸
commas

<= 8N + 2

(5)

and 8N − 6 for T∆
c .

We can eliminate all commas by using fixed three digit
fields for each delta, padded with zero, four digits for
dXmin and δX1 and five digits for dYmin and δY1 to get
a significant improvement (Figure 5b) over len(T∆min

c)
or len(T∆

c), called T∆min
f or T∆

f :

len(T∆min
f) = 4︸︷︷︸

dXmin

+ 5︸︷︷︸
dYmin

+ 3(N − 1)︸ ︷︷ ︸
dXi

+ 3(N − 1)︸ ︷︷ ︸
dYi

= 6N + 3

(6)

and 6N − 3 for T∆
f , which is in between the upper and

lower bounds on T∆min
c or T∆

c . The skew in the delta
values results in T∆min

c being usually better than T∆min
f .

3. HIGHER BASE ENCODING
For the next set of compression techniques we use a

convenient base (B) transformation, HB(·), to repre-
sent the encoded polygon. Encoding a large number in
base 62 using alphanumeric characters [0-9A-Za-z] rather
than just numeric digits [0-9] significantly reduces overall
polygon string lengths. For example, one base 62 “bigit”

b can represent an integer up to 61, two base-62 “bigits”,
bb, can represent an integer up to 3843, while three “big-
its” bbb can represent an integer up to 238327, and so
on. So each delta can be represented in one or two base
(B >= 62) characters. A higher base, such as base 70,
can represent even larger integers in fewer characters: a
single base-70 “bigit” b can represent an integer up to
69, two base-70 bigits bb can represent an integer up to
4899, and three base-70 bigits bbb can represent integers
up to 342999. Likewise, dXmin can be encoded in two
base 70 bigits and dYmin can be encoded in two or three
base 70 bigits. Because of the choice of values for X0 and
Y0, the restricted ranges and skew of dXmin and dYmin

allow most to pack within two base-70 characters. For
our analysis and experiments of compression techniques,
we will use B = 70 with all alphanumeric characters and
some allowable special characters used in SMS.

StringH70(T∆min
c) is the transformation of the comma-

delimited values in base-70. For example, if T∆min
c = [9,

60, 70], then H70(T∆min
c) =“9,y,10”. The upper bound

on the length is then:

len(H70(T∆min
c)) <= 2︸︷︷︸

dXmin

+ 3︸︷︷︸
dYmin

+ 2(N − 1)︸ ︷︷ ︸
dXi

+ 2(N − 1)︸ ︷︷ ︸
dYi

+ 2N − 1︸ ︷︷ ︸
commas

<= 6N

(7)

and the lower bound will be:

len(H70(T∆min
c)) >= 1︸︷︷︸

dXmin

+ 1︸︷︷︸
dYmin

+ (N − 1)︸ ︷︷ ︸
dXi

+ (N − 1)︸ ︷︷ ︸
dYi

+ 2N − 1︸ ︷︷ ︸
commas

>= 4N − 1

(8)

Similarly, fixed length coding T∆min
f in base-70 will

have length strictly 4N + 1:

len(H70(T∆min
f)) = 2︸︷︷︸

dXmin

+ 3︸︷︷︸
dYmin

+ 2(N − 1)︸ ︷︷ ︸
dXi

+ 2(N − 1)︸ ︷︷ ︸
dYi

= 4N + 1
(9)

4. VARIABLE LENGTH ENCODING
Using the skewed distribution of the delta lengths (Fig-

ure 3), we can significantly improve compression com-
pared to T∆min

f , while still omitting the commas that

appear in T∆min
c . Similar to the concept of Golomb en-

coding [8], a simple variable-length encoding of the deltas
can use a single base B bigit b for most deltas, those be-
low B, and three characters −bb for the rest. For deltas
greater than B, we use the indicator character “-” (mi-
nus) followed by two characters, −bb. Note that reserv-
ing “-” for this pupose means there is one less character
for the base encoding.

5

(a) dXmin ∈ [167, 3284] (b) dYmin ∈ [456, 9932]

(c) δX1 ∈ [169, 3301] (d) δY1 ∈ [458, 9988]

Figure 4: Ranges for large values in both transformations. T∆min has (dXmin, dYmin), and T∆ has (δX1, δY1)

(a) Distribution of T∆min
c lengths (b) Distribution of T∆min

f lengths

(c) Distribution of T∆
c lengths (d) Distribution of T∆

f lengths

Figure 5: Distribution of base 70 compressed lengths for both transformations

6

Similarly, dXmin and dYmin could be encoded in one,
three or four characters, using b, −bb, or +bbb, using − or
+ as the indicator. However, better compression occurs
if we split dXmin and dYmin, or equivalently δX1, and
δY1 for T∆, each into two smaller parts using an agreed
factor. Using the base B is a particularly appropriate
choice:

dXmin = B ∗dX′min +dX′′min or δX1 = B ∗δX′1 +δX′′1 (10)

dYmin = B ∗ dY ′min + dY ′′min or δY1 = B ∗ δY ′1 + δY ′′1 (11)

dX ′min and dY ′min encoding will each require at most
three characters due to their distribution shown in figures
4a and 4b. dX ′′min and dY ′′min are guaranteed to be en-
coded using a single bigit each. If B is 70, dX ′min will also
be encoded using a single bigit. If T∆min = [9, 60, 70, 73],
then the base-70 encoding would be “9y-10-13”.

It is important to note that we do not need commas or
a fixed field to differentiate between the coordinates dur-
ing decoding, since the indicator character, −, will suf-
fice. The variable length encoding will be upper bounded
by 6N for T∆min transformation, and 6N − 6 for T∆

transformation. While H70(T∆min
f) length is better than

these bounds, the skewed distributions of the NWS cor-
pus ensure that the variable length encoding will be most
often better (see Figure 5b).

Leveraging both Skew and Limited Range of
Deltas: We can do even better by further exploiting
the skewed distributions. To improve on variable length
encoding, we notice that since all deltas dXi, dYi are less
than 350 (and ∆Xi,∆Yi are less than 550), those that
are greater than B, and would normally use −bb do not
use the full range allowed by bb; instead we will only
see 1b, 2b, . . . 6b for V AR∆min (and 1b, 2b, . . . 8b) for
V AR∆ which allows us to replace the three character
−bb with a two character xb, where x is one of several
unused special characters such as [+∗/()% . . .]. Likewise,
the split dXmin uses one char b for each part. dY ′′min, or
δY ′′1 also uses one character. Only dY ′min or δY ′1 might
use −bb, but their range is also restricted (no more than
167), so instead of −bb, we will also use xb. The upper
bound on the length of T∆min after applying variable
length encoding (V AR):

len(V AR∆min
64) <= 2︸︷︷︸

dX′
min & dX′′

min

+ 3︸︷︷︸
dY ′

min & dY ′′
min

+ 2(N − 1)︸ ︷︷ ︸
dXi

+ 2(N − 1)︸ ︷︷ ︸
dYi

<= 4N + 1

(12)

Note again that the base 64 reserves an additional six
special characters for the allowed 70. Transformation T∆

needs two more special characters due to the bounds on
(∆Xi,∆Yi), len(V AR∆

62) is upper bounded by 4N − 3.
The lower bound on the length of V AR∆min

64 is achieved
when all values are less than B = 64 (and less than

B = 62 for V AR∆
62)4:

len(V AR∆min
64) >= 2︸︷︷︸

dX′
min & dX′′

min

+ 2︸︷︷︸
dY ′

min & dY ′′
min

+ (N − 1)︸ ︷︷ ︸
dXi

+ (N − 1)︸ ︷︷ ︸
dYi

>= 2N + 2

(13)

For example, V AR∆min
64 =“9y+11”, if:

T∆min = [9, 60, 62, 65]. The lower bound for V AR∆
62

remains same as for V AR∆min
64 .

5. BIGNUM COMPRESSION
Bignum compression further improves on T∆min or

T∆, by combine each delta pair (dXi, dYi) or (∆Xi,∆Yi)
into a larger single number:

dXYi = dXi ∗XX + dYi, (14)

where XX can be a fixed choice or chosen based on
the range of dYi to make sure there is “space” for dYi.
For instance based on our corpus XX = 350 will be an
appropriate value to “make space” for dYi because dYi

is less than 350 for the NWS corpus; similarly ∆Yi is
always less than 550.

Likewise, we can combine (dXmin, dYmin) or (δX1, δY1)
using a larger factor:

dXYmin = dXmin ∗ Yfactor + dYmin , (15)

where Yfactor can be chosen based on the range of
dYmin. An appropriate value based on the corpus is
10, 000 to make space for the dYmin.

Expanding on this pair of deltas idea, we can aggregate
all deltas into a single large integer, using a simplified
form of arbitrary precision integer arithmetic. The large
integer is computed by successive pairing of elements of
T∆min:

BIG∆min
i+1 = (BIG∆min

i ∗XX2)+((dXi+1)∗XX)+(dYi+1),
(16)

where i ∈ [1, N − 1], and BIG∆min
i is 0. We add one

to all dXi and dYi values to avoid the pathological case
when delta values are zero.5 For T∆ we use essentially
the same equation:

BIG∆
i+1 = (BIG∆

i ∗XX2) + ((∆Xi + 1) ∗XX) + (∆Yi + 1),
(17)

where i ∈ [1, N − 2]. The value XX is chosen for each
polygon using a ”indicator” character S defined by:

S =
max(supi dXi, supi dYi)

d
+ 1 (18)

XX = d ∗ S + 1 (19)

4One could choose to allocate less than 6 or 8 characters
to the xb, but then the ”-”would be needed in a few cases
5Strictly speaking, only the first value, dX1 could cause
a problem.

7

The value for d can be chosen based on the distribution
of the deltas. For the NWS corpus, d = 6 ensures XX
to be large enough to encode any (dXi, dYi), while d = 9
ensures XX will be large enough for (∆Xi,∆Yi). Also,
the above selection of XX guarantees its encoding via S
using a single character in base-70 for S. 6

Larger values for the starting points in T∆min and T∆

could also be included in BIG in several ways. Firstly
by choosing an appropriate set of factors based on the
distribution, such as Xfactor = 3500 and Yfactor = 10000
for NWS corpus, and then apply the following:

BIG∆min
N = (BIG∆min

N−1 ∗Xfactor+dXmin)∗Yfactor+dYmin

(20)

BIG∆
N−1 = (BIG∆

N−2 ∗Xfactor + δX1)∗Yfactor + δY1 (21)

The Xfactor and Yfactor make space for their (dXmin,
dYmin) or (δX1, δY1). The encoded string in base-70
representation is a concatenation:

BIG
∆min
70 = S • BIG∆min

N

BIG
∆
70 = S • BIG∆

N−1

An estimate of the bounds on BIG can be obtained
by noticing that we are essentially placing each dXi and
dYi, or ∆Xi and ∆Yi into an XX sized space, essen-
tially “shifting” by log2(XX) bits, concatenating into a
big number, and then chopping into B sized characters
(each log2(B) bits). Thus allowing one character for
S and about four characters for the dXmin, δX1, etc.
shifted by Xfactor and Yfactor, we get approximately:

len(BIG
∆min
B) ≈ 1 +

(log2(Xfactor) + log2(Yfactor)

log2(B)

+
2(N − 1)log2(XX)

log2(B)

len(BIG
∆min
70) ≈ 2(N − 1)

log2(XX)

log2(70)
+ 5.09

(22)

and

len(BIG
∆
B) ≈ 1 +

(log2(Xfactor) + log2(Yfactor)

log2(B)

+
2(N − 2)log2(XX)

log2(B)

len(BIG
∆
70) ≈ 2(N − 2)

log2(XX)

log2(70)
+ 5.09

(23)

for B = 70, Xfactor = 3500 and Yfactor = 10000.
Thus when XX = B, this is essentially one more than

the bound on V AR, and gets increasingly better as XX
decreases below B. Furthermore, at larger XX, BIG
will be better than V AR for certain polygons when a

6A slightly better result is obtained if we use
a piecewise linear approximation of XX(S) to
max(supi dXi, supi dYi), whereby we exactly match for
XX = 0 : 30, and then more granular from XX = 31 :
330 (or 31 : 540 for T∆).

significant number of the delta coordinates in the poly-
gon are larger than B, thus requiring the longer two-
character xb representation. Note that actual encoding
base B is smaller for V AR than for BIG for the same
set of available characters.

The best case compression in the BIG technique for
a polygon would be to pick the compression parameters
adaptively as follows:

XX = max(sup
i
dXi, sup

i
dYi) + 27

Xfactor = dXmin + 1

Yfactor = dYmin + 1

However, outputting these exact choices as part of the
string would add too many characters. Indeed, we could
then directly encode dXmin and dYmin in other ways
but experiments suggest that will not be any better than
encoding using the Xfactor and Yfactor approach. 8

6. VARIABLE LENGTH ENCODING
WITH REPEATED SUBSTRING DIC-
TIONARY (RSD)

Here we extend the idea of variable length encoding
further by usage of a dictionary9. The input string to
this technique is the transformed list of coordinates rep-
resented by V AR∆min

B or V AR∆
B . As indicated above,

each delta will either be a single b or two character xb.
Inspired by LZW, we exploit the statistical redun-

dancy in polygons across the corpus to generate a static
dictionary for the entire NWS corpus, and provide that
to the encoding and decoding systems. This dictionary is
essentially a set of most frequently repeated three char-
acter sub-strings. We are using the same base B as for
variable length encoding (V AR) in the dictionary for
keys and values10. A sub-string of size two would not
have performed any extra compression since we need to
prefix a dictionary value with an indicator character to
make the distinction of dictionary value in the encoding,
and non-dictionary value. The size of the dictionary is
constrained by the available set of characters, and any

7Since we add one to all deltas in Eq.16, XX has to be
strictly greater than all dXi + 1 and dYi + 1 such that
we can decode correctly. Strictly, we only have to deal
with the first point specially.
8We can also apply the same V AR splitting approach,
treating the parts of dXmin and dYmin as four addi-
tional deltas. Thereafter, using a potentially larger XX ′

in place of XX in Eq.16, and also in Eq.20 in place of
Xfactor and Yfactor. This adaptively picking parameters
holds true for (X ′1, Y

′
1). However, in the NWS corpus it

is not as good as the Xfactor, Yfactor approach.
9A dictionary contains a set of mapping objects (key,
value)

10Actually, we can use the full allocated 70 character size
for the table

8

Transformation Variable Value

T∆min O [31.3,-97.4,31.51,-97.55,31.8,-96.99,31.58,-96.84,31.3,-97.4]
O′ [3130,9740,3151,9755,3180,9699,3158,9684]

T∆min [1530,3684,0,56,21,71,50,15,28,0]
T∆min
c “1530,3684,0,56,21,71,50,15,28,0”
T∆min
f “153003684000056021071050015028000”

BIG
∆min

“14818307150871153 03684”

BIG
∆min
70 “Z7YfAH*‘vmYi4”

T∆ O [31.3,-97.4,31.51,-97.55,31.8,-96.99,31.58,-96.84,31.3,-97.4]
O′ [3130,9740,3151,9755,3180,9699,3158,9684]

T∆ [1530,3740,42,30,58,111,43,29]
T∆
c “1530,3740,42,30,58,111,43,29”
T∆
f “153003740042030058111043029”

BIG
∆

“33202964332840303740”

BIG
∆
70 “ZBqu20DM8m*y”

Table 1: Example of compression with different transformations. Notice that T∆ is always less in length in compar-
ison to T∆min, primarily because it has one less point. Base 70 is considered for convenience and easy comparison
with V AR.

encoding using the dictionary will be of length two. We
tried two approaches to construct the dictionary:

• Fixed field matching: Chop the character string
into disjoint three character substrings, and keep a
count of each unique sub-string.

• Sliding window: Slide a three character window
across the string and keep a count of each substring
in the dictionary. Again, the size is restricted by
the base.

The fixed field case is easier to implement, and faster
to execute, but the sliding window gives better results.

There may be cases when none of the repeated sub-
strings occur in the input, and no extra compression is
achieved, but there is no penalty, other than a linear or-
der of cost of creating and storing the dictionary, and the
finding any matching substrings. For any variable length
encoding using base B, V ARB , the encoding with RSD
will be referred as V ARB−1 RSD. B − 1 due to the ex-
tra special character for encoding substrings found in the
dictionary.

Table 2 is an example of a static dictionary storing
70 three character substrings for V AR∆min

63 encodings of
NWS corpus. 000 occurred 1414 times, whereas 00N was
the last entry in the table which occurred 96 times:

7. ARITHMETIC ENCODING
Arithmetic encoding (AE) is a variable length and loss-

less encoding technique. For compression and decom-
pression AE relies on a probabilistic model. The algo-

key base-70 value

000 0
100 1
... ...

C00 N
... ...

00N

Table 2: Repeated Substring Dictionary for variable
length encoding

rithm is recursive for each character i.e. it operates upon
and encodes (decodes) one data symbol per iteration [11].

The probability model over the possible characters to
perform the encoding and decoding steps is essential for
optimal compression. Specifically, the compression ratio
depends on how well the probability model represents
the string of characters to be encoded. For our experi-
ments with polygons the probability of occurrence of any
character is based on the entire corpus of polygons.

For the purpose of the polygons, we will define the
character sequence Σ = (0123456789). Before applying
AE, all polygons were transformed to deltas by the same
heuristics used to get the T∆min string.

Arithmetic encoding is applied to this delta string.
The basic algorithm is described below.

1: Begin with the current interval [l0, h0) initialized to
[0, 1).

2: Sub divide the current interval [l0, h0) proportional to

9

Transformation Variable Value

T∆min O [30.97,-92.28 30.89,-92.04 30.61,-92.22 30.65,-92.34 30.97,-92.28]
O′ [3197,9228,3089,9204,3061,9222,3065,9234]

T∆min [1461,3204,36,24,28,0,0,18,4,30]
V AR∆min

64 “Mro4aOS00I4U”
V AR∆min

63 RSD “NCosaOS@v4U”

T∆ O [30.97,-92.28 30.89,-92.04 30.61,-92.22 30.65,-92.34 30.97,-92.28]
O′ [3197,9228,3089,9204,3061,9222,3065,9234]

T∆ [1497,3228,15,47,55,36,8,24]
V AR∆

62 “O9q4Flta8O”
V AR∆

61 RSD “OXquFlta8O”

Table 3: Example of compression with different transformations. Notice that @ in V AR∆min
63 RSD is the indicator

character to distinguish between a dictionary value and non-dictionary value. Although, V AR∆
61 had no keys in its

RSD dictionary, and therefore V AR∆
61 RSD ≈ V AR∆

62

the probability of each character in Σ.

3: For each character ci of the polygon string, we per-
form two steps: Consider the probability interval for
ci, call it [li, ui) and make it the current interval. Sub-
divide the current interval into subintervals, one for
each possible character, and defined by probabilities
over Σ.

4: We output enough bits representing the final interval
[ln, un), where n is the length of the polygon string.

The output from step 3 of the algorithm is a binary
representation of any real value in the interval [ln, un).
A real value in the final interval uniquely identifies a
string of characters provided the length of the string to
be decoded is known by the decoder. In other words,
each input string generates a unique probability interval
due to the recursive approach of dividing the probability
intervals.

As stated before, we need to embed the length of the
input string for the decoder to retrieve the original poly-
gon but here we embed the number of coordinates of the
polygon in the compressed string which is sufficient for
decompression.

8. STANDARD METHODS-LZW,
GOLOMB, HUFFMAN, 7ZIP, GZIP

LZ78 [15] is a variant of the LZW (Lempel-Ziv-Welch)
algorithm, implemented for example in the well-known
GZIP. The basic idea of the LZW algorithm is to take
advantage of repetition of substrings in the data [2] and
use a smaller length encoding for such repetitions using
data structure like a dictionary with one-to-one mapping
of substrings to encodings. We tried the LZW algorithm
with both T∆min

c and T∆
c strings.

With T∆ as an input, we also tried other standard
string compression algorithms available [12] like 7zip,

and gzip, but their compressed lengths were not as good
as our BIG or V AR encoding techniques.

We compared our results to Golomb coding [8], which
is well studied technique for input values following a ge-
ometric distribution, essentially where most values are
small, like our delta distributions. Golomb is essentially
a concatenation of a variable length unary coded prefix
(a string of 1 followed by a 0) and a fixed bit length
remainder. We then encoded this bit string in base B
characters for both transformations.

We also compared our results to Huffman encoding [9]
using probabilities similar to the AE method. Huffman
builds a coding tree using these probabilities, but due to
its size (4835 leaf nodes for ∆min and 4715 leaf nodes
for ∆ transformation) this compression technique will
not be space efficient on a mobile phone.

9. PRACTICAL CONSIDERATIONS
In order to embed a compressed polygon string in a

WEA message, or a simulated WEA message for the tri-
als, we need to signal the start and stop of the polygon
string, or the start and length, as appropriate. In most
cases, we could prefix, # or #p and a postfix, # or #].
In order to embed the polygon in longer text messages
that might contain a # character, we encode any other
as a ##. Furthermore, as indicated, we use base 70
(or higher) to compress numeric strings. We can use a
larger base, such as 90, however we need to limit to only
use characters that can be included in an SMS or broad-
cast message, and exclude any characters that are also
used by the compression scheme (such as the # sentinel,
the -, + and other characters used for signs for variable
length V AR substrings, and the @ indicator in the RSD
approach). Thus in most cases, the embedded polygon
will be 2-4 characters longer than the numbers indicated
above.

Also for Arithmetic Encoding (AE) although we need

10

Figure 6: Summary of Base 70 results showing mean percentage of compressed length. Our compression techniques
(shown in blue) have mean compressed length less than 20 with low error (standard deviation) in comparison to some
standard techniques (shown in green).

to include the number of characters to be retrieved by the
decoder, we will need a prefix and a postfix as sentinels.
For some values of S in BIG, we can save one character
by using a different sentinel, #q, #r, #s instead of #pS.

See [5] for discussion of character sets. Sometimes,
operator gateways used in our experiments would not
transmit some characters, and so we used base 70, even
though a higher base would somewhat improve the com-
pression percentages.

10. POLYALGORITHM
Because of the variability in the results for each tech-

nique, each has some polygons for which it is the best
method, leading to consideration of combinations of tech-
niques and adaptive technique selection.

As indicated below, the two best techniques BIG∆(S)
and V AR∆

RSD are close in output character lengths. We
can create a combined technique, POLY ∆(S), that uses
BIG∆(S) where it is best and V AR∆

RSD where it is best,
adding an extra character S = 0 to signal V AR∆

RSD and
other values of S to signal and control BIG∆(S). Since
BIG∆ and V AR∆

RSD are so close (with BIG better for
small XX), adding this extra character can swamp the
benefit. This extra character can be saved in the prac-
tical case by using a different sentinel #q, instead of
#p0. Note that if we decide that only 70 characters

are available, we use the full B = 70 as encoding base
for BIG, but since we are reserving 9 characters for in-
dicators in V AR∆

RSD, we actually use only B = 61 as
encoding base for the corresponding V AR∆

61,RSD. Thus
V AR, and V ARRSD do “waste” some of the available
characters.

It is important to note that BIG should always be bet-
ter than V AR when dXYmax = supi(dXi, dYi) < B11,
which, as can be seen from Figure 3, occurs more than
65% of the time for B = 62 and more than 80% for B =
90 for T∆min, and when ∆XYmax = supi(∆Xi,∆dYi) <
B which occurs 34% for B = 62 and 62% for B = 90 for
T∆min. Typically the shorter length of BIG occurs when
XX is quite a bit less than B.

So in setting XX(S) effectively for the polyalgorithm,
its important to haveXX close to the dXYmax or ∆XYmax.
In many cases BIG will be better than V AR, and will
be substantially better for smaller XX and for those
polygons when many of their deltas require two base B
characters for larger XX.

11. COMPARISON, DISCUSSION & CON-
CLUSIONS

Figure 6 summarizes the 70 character (usually base 70,

11This is the B used in the comparible VAR encoding

11

(a) Compression lengths with T∆min as input
transformation

(b) Compression lengths with T∆ as input
transformation

Figure 7: Comparison of compressed polygon lengths with original lengths (O) of polygon strings

except for the V AR techniques) compression results of
the 11370 polygons collected from the NWS online por-
tal for 2012, 2013, and through December, 2014. Base 70
was chosen to incorporate the reserved characters used
by V AR and V ARRSD apart from the alphanumeric
characters of base 62. We noticed small improvements
at a higher value 90, particularly in the maximum values
of lengths, and the reduced standard deviation.

In general, V AR can be characterized as the best and
simplest direct technique, with the best compression ra-
tio and least variability. BIG is very close, and as indi-
cated above is better when XX < B and when a signifi-
cant number of deltas require two characters in V AR for
larger XX. However V ARRSD is slightly better over-
all. Because the results are so close, which method is
ultimately deemed best depends strongly on the specific
polygon and the overall distribution of the polygons.

Figures 7a, 7b shows that all of the methods yield sub-
stantial compressions. As seen from the figures and from
the formulas displayed earlier, the results are essentially
linear in N .
BIG∆ and V AR∆ are the best direct techniques, each

leading in about 50% of the cases. We observed from
the detailed results for each polygon that V AR∆

61 RSD is
better than V AR∆

62, and for more than 50% of the time
V AR∆

61 RSD is better than BIG70. Thus we introduce
the polyalgorithm, POLY70 which is slightly better than
V AR∆

61 RSD overall.
Figures 8a and 8b compare the best methods using a

set of 70 available characters, with corresponding encod-
ing base B = 61, 62, 63, 64, or 70 for the different tech-
niques, but we would get similar results with a larger
base.

Compression of polygons using kd-trees [4] is known
to have good compression ratios only when the polygon

mesh is sparse with few edges [1].
As we explored various techniques, we experimented

with several small optimizations that would occasionally
save a character. These involved adjusting some of the
parameters such as X0, Y0, Xfactor, and Yfactor, chang-
ing the piece-wise linear representation of XX(S) and so
forth, but overall the parameters presented in this paper
seemed the best compromise.

By Shannon’s coding theorem [14] optimal compres-
sion for a set Σ of symbols in which each symbol c has
the probability of occurrence pc, then the entropy is given
by:

E(Σ) =
∑
c∈Σ

−pc · lg2(pc) (24)

bits from encoding each symbol. Huffman encoding is
an optimal prefix encoding technique, such that the Huff-
man encoding length is never longer than the entropy of
the given distribution. In figure 9, we see that BIG and
V AR are close to the almost optimal Huffman encoding.
None of the other techniques like 7zip, LZW, and gzip
were as good on the NWS corpus as these two.

12. FUTURE WORK
Future work includes exploring even more use of sta-

tistical skew, such as an extended form of variable length
encoding. This approach will allow us to take the variable-
length encoding strategy further by starting from a base-
2 (binary) representation, and using one or two bits to
determine the length of the following field. We will fur-
ther explore this more Golomb-like option.

We also plan to use integer programing to find the
near optimal set of compression parameters such that we
maximize the leverage of any skew in the delta values.

12

(a) Compression lengths with T∆min as input
transformation

(b) Compression lengths with T∆ as input
transformation

Figure 8: Comparison of best techniques

(a) Compression lengths in bits with T∆min as input
transformation

(b) Compression lengths in bits with T∆ as input
transformation

Figure 9: Comparison of compressed polygon lengths with Shannon bound

13

13. ACKNOWLEDGEMENTS
We gratefully appreciate support from the Department

of Homeland Security, Science and Technology Direc-
torate. We also appreciate the conversations, advice and
weather polygon data supplied by Mike Gerber of the
National Oceanic and Atmospheric Administration’s Na-
tional Weather Service.

14. REFERENCES
[1] P. Alliez and C. Gotsman. Recent advances in

compression of 3d meshes. In Advances in
Multiresolution for Geometric Modelling, pages
3–26. Springer, 2005.

[2] S. Blackstock. LZW and GIF explained.
http://www.cs.cmu.edu/~cil/lzw.and.gif.txt,
1989. [Online; accessed 26-January-2015].

[3] L. T. DeCarlo. On the meaning and use of
kurtosis. Psychological methods, 2(3):292, 1997.

[4] O. Devillers and P.-M. Gandoin. Geometric
compression for interactive transmission. In
Visualization 2000. Proceedings, pages 319–326.
IEEE, 2000.

[5] ETSI. Digital cellular telecommunications system
(Phase 2+); Alphabets and language-specific
information. http://www.etsi.org/deliver/
etsi_ts/100900_100999/100900/07.02.00_60/

ts_100900v070200p.pdf, 1998. [Online; accessed
19-October-2014].

[6] P.-M. Gandoin and O. Devillers. Progressive

lossless compression of arbitrary simplicial
complexes. In ACM Transactions on Graphics
(TOG), volume 21, pages 372–379. ACM, 2002.

[7] M. Gerber. NOAA Public WEA Dataset, 2013.

[8] S. Golomb. Run-length encodings (corresp.).
Information Theory, IEEE Transactions on,
12(3):399–401, Jul 1966.

[9] D. A. Huffman et al. A method for the
construction of minimum redundancy codes.
Proceedings of the IRE, 40(9):1098–1101, 1952.

[10] B. Iannucci, P. Tague, O. J. Mengshoel, and
J. Lohn. Crossmobile: A cross-layer architecture
for next-generation wireless systems. 2014.

[11] G. G. Langdon Jr. An introduction to arithmetic
coding. IBM Journal of Research and
Development, 28(2):135–149, 1984.

[12] M. Mahoney. Data Compression Programs.
http://www.mattmahoney.net/dc/, 2015. [Online;
accessed 26-January-2015].

[13] NOAA. NOAA Public WEA Dataset.
http://weather.noaa.gov/pub/logs/heapstats/,
2014. [Online; accessed 19-October-2014].

[14] C. E. Shannon. A mathematical theory of
communication. ACM SIGMOBILE Mobile
Computing and Communications Review,
5(1):3–55, 2001.

[15] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. IEEE Transactions
on information theory, 23(3):337–343, 1977.

14

http://www.cs.cmu.edu/~cil/lzw.and.gif.txt
http://www.etsi.org/deliver/etsi_ts/100900_100999/100900/07.02.00_60/ts_100900v070200p.pdf
http://www.etsi.org/deliver/etsi_ts/100900_100999/100900/07.02.00_60/ts_100900v070200p.pdf
http://www.etsi.org/deliver/etsi_ts/100900_100999/100900/07.02.00_60/ts_100900v070200p.pdf
http://www.mattmahoney.net/dc/
http://weather.noaa.gov/pub/logs/heapstats/

	Introduction
	Heuristic Approaches
	Higher Base Encoding
	Variable Length Encoding
	Bignum Compression
	Variable Length Encoding with Repeated Substring Dictionary (RSD)
	Arithmetic Encoding
	Standard Methods-LZW, Golomb, Huffman, 7zip, gzip
	Practical Considerations
	Polyalgorithm
	Comparison, Discussion & Conclusions
	Future Work
	Acknowledgements
	References

