11th Symposium on Integrated Observing and Assimilation Systems for the Atmosphere, Oceans, and Land Surface (IOAS-AOLS)

3.6

An Investigation of the characterization of cloud contamination in hyperspectral radiances

Will McCarty, University of Alabama, Huntsville, AL; and G. J. Jedlovec, A. L. Molthan, and J. F. LeMarshall

In regions lacking direct observations, the assimilation of radiances from infrared and microwave sounders is the primary method for characterizing the atmosphere in the analysis process. In recent years, technological advances have led to the launching of more advanced sounders, particularly in the thermal infrared spectrum. With the advent of these hyperspectral sounders, the amount of data available for the analysis process has and will continue to be dramatically increased. However, the utilization of infrared radiances in variational assimilation can be problematic in the presence of clouds; specifically the assessment of the presence of clouds in an instantaneous field of view (IFOV) and the contamination in the individual channels within the IFOV. Various techniques have been developed to determine if a channel is contaminated by clouds. The work presented in this paper and subsequent presentation will investigate traditional techniques and compare them to a new technique, the CO2 sorting technique, which utilizes the high spectral resolution of the Atmospheric Infrared Sounder (AIRS) within the framework of the Gridpoint Statistical Interpolation (GSI) 3DVAR system. Ultimately, this work is done in preparation for the assessment of short-term forecast impacts with the regional assimilation of AIRS radiances within the analysis fields of the Weather Research and Forecast Nonhydrostatic Mesoscale Model (WRF-NMM) at the NASA Short-term Prediction Research and Transition (SPoRT) Center.

extended abstract  Extended Abstract (472K)

wrf recording  Recorded presentation

Session 3, Assimilation of Observations (Ocean, Atmosphere, and Land Surface) into Models
Tuesday, 16 January 2007, 8:30 AM-4:00 PM, 212B

Previous paper  Next paper

Browse or search entire meeting

AMS Home Page