The University of Southern California (USC) and the Jet Propulsion Laboratory (JPL) have jointly developed a real-time Global Assimilative Ionospheric Model (GAIM) to monitor space weather, study storm effects, and provide ionospheric calibration for DoD customers and NASA flight projects. JPL/USC GAIM is a physics-based 3D data assimilation model that uses both 4DVAR and Kalman filter techniques to solve for the ion & electron density state and key drivers such as equatorial electrodynamics, neutral winds, and production terms. Daily (delayed) GAIM runs can accept as input ground GPS TEC data from 1000+ sites, occultation links from CHAMP, SAC-C, and the COSMIC constellation, UV limb and nadir scans from the TIMED and DMSP satellites, and in situ data from a variety of satellites (DMSP and C/NOFS). RTGAIM ingests multiple data sources in real time, updates the 3D electron density grid every 5 minutes, and solves for improved drivers every 1-2 hours. Since our forward physics model and the adjoint model were expressly designed for data assimilation and computational efficiency, all of this can be accomplished on a single dual-processor Unix workstation. Customers are currently evaluating the accuracy of JPL/USC GAIM “nowcasts” for ray tracing applications and trans-ionospheric path delay calibration.
In the presentation, we will discuss the expected impact of COSMIC occultation data, describe recent improvements to the adjoint model and estimation of drivers, and present early validation results for NRT ingest of COSMIC data into RTGAIM.
Supplementary URL: