87th AMS Annual Meeting

Wednesday, 17 January 2007
Remote Measurements of Carbon Monoxide over North America and Europe during Summer-Fall 2004
Exhibit Hall C (Henry B. Gonzalez Convention Center)
Vickie S. Connors, NASA/LRC, Hampton, VA; and P. Hopkins, H. Reichle, G. Sachse, and W. McMillan
The MicroMAPS instrument is a nadir-viewing, gas filter-correlated radiometer which operating in the 4.67 micrometer fundamental band of carbon monoxide. Originally designed and built for a space mission, this CO remote sensor is being flown in support of satellite validation and science instrument demonstrations for potential UAV applications. The MicroMAPS instrument system was integrated and tested at NASA LaRC, in partnership with Scaled Composites and Virginia Space Grant Consortium (VSGC). Full system integration and flight testing was performed at Scaled Composites, in Mojave, in June 2004. Its successful performance enabled participation in four international science missions on Proteus: in 2004, INTEX -NA over eastern North America in July, ADRIEX over the Mediterranean region and EAQUATE over the United Kingdom region in September,and TWP-ICE over Darwin, Australia and the surrounding oceans in Jan-Feb 2006. These flights resulted in nearly 300 hours of data.

In parallel with the engineering developments, theoretical radiative transfer models were developed specifically for the MicroMAPS instrument system at the University of Virginia, Mechanical Engineering Department by a combined undergraduate and graduate student team. With technical support from Resonance Ltd. in June 2005, the MicroMAPS instrument was calibrated for the conditions under which the Summer-Fall 2004 flights occurred. The analyses of the calibration data, combined with the theoretical radiative transfer models, provide the first data reduction for the science flights reported here. The influence on widespread fires in Alaska and Canada, coupled with the influence of stratospheric intrusions over the eastern portion of North America during Summer 2004, provides the opportunity to examine the evolution of the tropospheric column and to examine how the transport histories of the air resulted in the CO columns sampled from the Proteus aircraft. These early results and comparisons with profile data from the NASA DC-8, the coincident AIRS CO retrievals, and selected CO measurements from the MOZAIC program will be presented.

Supplementary URL: