The objective of this research was to find out how Rs in highly managed urban vegetation responds to various irrigation and fertilization regimes and to determine whether specific management strategies can influence urban carbon exchange. Quantifying the magnitude of soil respiration in urban vegetation will also help in partitioning CO2 emissions between combustion processes and biogenic sources in suburban areas.
We made periodic measurements of Rs using a portable system equipped with an opaque PVC chamber, on eight lawns in two residential neighborhoods in Vancouver, BC, Canada. Ts at the 5 cm depth and θ in the 0-10 cm layer were also simultaneously measured using a copper-constantan thermocouple and a hand-held TDR probe, respectively. All sites were within the footprints of eddy covariance (EC) systems monitoring CO2 exchange at the local-scale (Crawford et al., 2009). Additionally, respiration and climatic conditions at two unmanaged (i.e. non-irrigated and non-fertilized) grassland sites in the region were measured as a reference. During summer 2008, measurements made prior to, during, and after scheduled periods of irrigation provided a range of soil moisture and soil temperature conditions. Based on correlations between Rs and Ts and θ, we developed an empirical model of urban soil respiration and discuss the impact of irrigation and green-space management on the urban carbon cycle.
References
Crawford B. et al., 2009, same conference.
Golubiewski N.E., 2006, Ecological Applications, 16, 555-571.
Koerner B., Klopatek J., 2002, Environ Pollut., 116, S45-S51.
Supplementary URL: