89th American Meteorological Society Annual Meeting

Tuesday, 13 January 2009
NPOESS Interface Data Processing Segment (IDPS) Hardware
Hall 5 (Phoenix Convention Center)
William J. Sullivan, Raytheon Intelligence and Information Systems, Aurora, CO; and C. R. Bergeron and D. A. Hargrave
The National Oceanic and Atmospheric Administration (NOAA), Department of Defense (DoD), and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation weather and environmental satellite system; the National Polar-orbiting Operational Environmental Satellite System (NPOESS). NPOESS replaces the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA and the Defense Meteorological Satellite Program (DMSP) managed by the DoD. The NPOESS satellites carry a suite of sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The NPOESS design allows centralized mission management and delivers high quality environmental products to military, civil and scientific users. The ground data processing segment for NPOESS is the Interface Data Processing Segment (IDPS), developed by Raytheon Intelligence and Information Systems. IDPS processes NPOESS satellite data to provide environmental data products to NOAA and DoD processing centers operated by the United States government. IDPS will process environmental data products beginning with the NPOESS Preparatory Project (NPP) and continuing through the lifetime of the NPOESS system.

Within the overall NPOESS processing environment, the IDPS must process a data volume several orders of magnitude the size of current systems -- in one-quarter of the time. Further, it must support the calibration, validation, and data quality improvement initiatives of the NPOESS program to ensure the production of atmospheric and environmental products that meet strict requirements for accuracy and precision. This poster will illustrate and describe the IDPS HW architecture that is necessary to meet these challenging design requirements. In addition, it will illustrate the expandability features of the architecture in support of future data processing and data distribution needs.

Supplementary URL: