J16.7
Effect of aerosol-cloud interactions on the hydrological cycle during the Amazonian biomass burning season

- Indicates paper has been withdrawn from meeting
- Indicates an Award Winner
Tuesday, 19 January 2010: 5:15 PM
B315 (GWCC)
John E. Ten Hoeve, Stanford University, Stanford, CA; and L. A. Remer and M. Z. Jacobson

The effect of aerosols on the hydrological cycle remains one of the largest uncertainties in our climate system. Biomass burning, from both deforestation and annual agricultural burning, is the largest anthropogenic source of these aerosols in the Southern Hemisphere. Biomass burning aerosols have competing effects on clouds: Depending on the level of aerosol loading and the background cloud characteristics, biomass burning aerosols have been shown in observational studies to invigorate or inhibit cloud formation and/or growth through microphysical and absorptive pathways, respectively. Many of these previous studies have employed all days during the Amazonian burning season months of August through October to formulate aerosol-cloud correlations, assuming relatively constant meteorological conditions exist throughout these months. This study investigates how intraseasonal trends of precipitable water vapor and aerosol loading between August and October impact these aerosol-cloud correlations. Other factors affecting aerosol-cloud relationships, such as atmospheric stability, are also investigated. This study is focused on a small 3 degree NE x 4 degree WE region in Rondonia, Brazil that encompasses extensive, contiguous areas of both forested and deforested land. High resolution aerosol, cloud, water vapor, and atmospheric profile data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on the Terra and Aqua satellites, as well as aerosol and water vapor data from the Aerosol Robotic Network (AERONET), are used collectively to explore the effect of aerosols on water vapor loading and warm cloud development over the Amazon. The difference in aerosol effects on the local hydrological cycle between forested and deforested areas is also examined. This final exercise provides insight into the relationship between aerosols, land-atmosphere processes, and warm clouds.