455
Using a K-Means clustering and watershed segmentation algorithm to automatically classify convective storm types
Using a K-Means clustering and watershed segmentation algorithm to automatically classify convective storm types


Wednesday, 20 January 2010
Exhibit Hall B2 (GWCC)
An automated approach to classifying convective storms is based upon both environmental and radar data using a K-Means clustering and watershed segmentation algorithm. Composite reflectivity was tracked and clustered according to three scales: 20 km, 200 km, and 2000 km. For each scale, certain storm types were chosen: short-lived convective cells, supercells, ordinary cells, and convective lines. Using data from five events between May 2008 and May 2009, storms were hand-classified into types. Initial analysis shows that these storms are distinct and can be automatically classified using a decision tree. Ultimate goals of this study are to predict hazards for each storm type using this automated decision tree.