14B.1 Evaluating cloud microphysics schemes in nested NMMB forecasts

Brad Ferrier^{1,2} Weiguo Wang^{1,2} Edward Colón^{1,2}

NOAA/NWS/NCEP

¹Environmental Modeling Center (EMC) ²IM Systems Group, Inc. (IMSG)

24th WAF/20th NWP Conf

North American Mesoscale (NAM) model

Current Ops

- WRF-NMM (Egrid)
- 4/Day, each to 84 hours
- 12 km, 60L up to 2 hPa
- 60 layers with 2 mb top
- 12 h NDAS assimilation, 4 3-h fcsts + GSI analysis

2011 Upgrade

- NEMS based NMM<u>B</u> (B-grid)
- Multiple Nest Runs
 - 4 km CONUS nest to 60h
 - 6 km Alaska nest to 60h
 - 3 km HI & PR nests to 60h
 - ~1.33 km Fire WX to 36h

(More in 15A.1, Rogers et al.)

NMMB Microphysics Development

- Added WSM6 microphysics
 - Used in WRF NSSL runs (Kain et al.)
 - Tested in 12-km/CONUS 4-km NMMB runs
 - Similar skill, uses 25-30% more CPU time
- Condensate advection flag
 - Advect individual hydrometeors (true) or total condensate (false)
 - Works for wsm6 & fer microphysics
 - Similar skill seen with either advection option (see poster 468 by Wang et al.)

24th WAF/20th NWP Conf

24-h QPF Verification

4-km CONUS Nest Runs (24h - 60h)

Revised Ferrier Microphysics (1 of 2)

- Expanded rain look up tables
 - Largest mean drop sizes (λ^{-1}) increased from 0.45 mm to 1 mm
- Cloud ice sedimentation
- New cloud water to rain autoconversion (Liu & Daum et al.)
 - No autoconversion threshold
 - Functional dependence of cloud water mixing ratio is quite different from Kessler formulation

– Increased droplet # conc from 100 to 200 cm⁻³

24th WAF/20th NWP Conf

Revised Ferrier Microphysics (2 of 2)

- T_ice_init=0 no "artificial" delay in the temperature at which ice initiation starts
- FLARGE2=0.07 (from Nakagawa's runs)
- VEL_INC~VRIMEF**2 faster rimed ice fall speeds (VRIMEF>1 when riming occurs)
- Minor changes to speed up code
- Early tests in single-column (KiD) runs (thanks to Ben Shipway@UKMO)

1D Column Tests (1 of 3) Sample 1D input/output

1D Column Tests (3 of 3)

24-h QPF Verification

Small impact on QPF & skill scores

24th WAF/20th NWP Conf

Impact of microphysics change

Ops fer

Revised fer NESTI COMPOSITE RADAR REFL NEST 09H FCST VALID 09Z 01 MAY 2010

COMPOSITE RADAR REFL NEST 09H FCST VALID 09Z 01 MAY 2010

Higher composite dBZ in revised version (right)

Modified Convection in Nests

- BMJ_DEV tests in 4-km CONUS runs
 - Moister profiles
 - Less triggering of deep convection
 - Reduced convective QPF
 - Better QPF bias than running w/o convection
 - Improved surface & upper-level scores (not shown)
 - Small impact on CAPE forecasts

Reduced BMJ_DEV triggering in 4-km nest

24th WAF/20th NWP Conf

QPF Verification in NMMB Nests

CAPE Verification in NMMB Nests

BIRS

.4

500

1000

– NMMB Parent BMJ ETS = 2.37457E–01

NMMB Nest No Conv ETS = 2.21602E-01

NMMB Nest BMJDEV ETS = 2.15548E-01

12h to 60h CAPE Verification at 2009012600 to 2010062012

12h to 60h CAPE Verification at 2009012600 to 2010062012

FORECAST CAPE (J KG-1) VS. RAOBS

1500

2000

24th WAF/20th NWP Conf

14B.1 Ferrier et al.

15

3000

4000

NMMB Forecast Reflectivities

PARENT COMPOSITE RADAR REFL NEST 00H FCST VALID 12Z 15 JUN 2009

12-km Parent

- Size is ½ of NAM domain
- Same BMJ Cu as in NAM
- Modified fer microphysics

NEST1 COMPOSITE RADAR REFL NEST 00H FCST VALID 12Z 15 JUN 2009

4-km CONUS Nest

- BMJ_DEV convection (reduced triggering)
- Modified fer microphysics

Reflectivity Verification (1 of 2)

4-km NMMB Nest

5-km Mosaic product

(see poster 94 by Colón et al.)

24th WAF/20th NWP Conf

Reflectivity Verification (2 of 2)

NMMB1 - "old" microphysics / NMMB2 & NMMB3 – "new" microphysics

 Better threat scores in "new" version, but also higher biases at ≤ 40 dBZ (Colón *et al.* poster)

24th WAF/20th NWP Conf

Cloud Fraction Changes (1 of 5)

In response to comments from weather.com

24th WAF/20th NWP Conf

Cloud Fraction Changes (2 of 5)

Cloud Fraction Changes (3 of 5)

- Total relative humidity, $RH_{tot} = (Q_v + Q_{cld})/Q_{sat}$
- Cloud fraction (F_c) a function of RH_{tot} , assumed to be Gaussian with $\sigma = 1\%$

24th WAF/20th NWP Conf

14B.1 Ferrier et al.

21

Cloud Fraction Changes (4 of 5)

- Cloud water condensation
 - Many CCN, droplet # O(10² 10³ cm⁻³)
 - Water supersaturations rarely exceed 1%
- Vapor deposition onto ice
 - Far fewer IN, crystal # O(1 10³ L⁻¹)
 - Much higher SS_{ice} at water saturation
 ~10% (-10°C), ~21.5% (-20°C), ~34% (-30°C), ~48% (-40°C)
- Ice saturation used for Q_{sat} in F_c at T<0°C
- RH_{tot} > 100% & $F_c \rightarrow 1$ even when $Q_{cld} \rightarrow 0$

24th WAF/20th NWP Conf

Cloud Fraction Changes (5 of 5)

- Simple, temporary "fix" (newest test in green)
 - $F_c = min[1, SQRT(10^{4*}Q_{cld})];$ (10⁵ in latest test)
 - F_c=0, Q_{cld}<0.001 g kg⁻¹, (10⁻⁴ g kg⁻¹)
 - $F_c=0.01$, $Q_{cld}=0.001$ g kg⁻¹, (10⁻⁴ g kg⁻¹)
 - $F_c=0.32$, $Q_{cld}=0.01$ g kg⁻¹, (10⁻³ g kg⁻¹)
 - F_c=1, Q_{cld}>=0.1 g kg⁻¹, (10⁻² g kg⁻¹)
 - F_{c} treated more as cloud "porosity"
- Cloud amounts =1 in radiation if $F_c>0$, maintains currently tuned SW, LW behavior

Total Cloud Fractions (%)

SINGLE_DOMAIN TOTAL CLOUD FRAC SWUS 33H FCST VALID 21Z 04 NOV 2010

B.1 Ferri NMMB: Newest Cloud Fraction

Cloud Verification (CLAVRx)

NAM, NMMB runs use the "old" cloud fractions Newer CF – NMMB run using newer cloud fractions Newest CF – NMMB run using the newest/latest cloud fractions

Better threats & biases using newest cloud fractions

(See Colón *et al.* poster)

24th WAF/20th NWP Conf

Conclusions

- Microphysics changes
 - Higher peak dBZ, RR (1D column runs)
 - Small impact on QPF
 - − Improved >50 dBZ, but worse (higher) biases \leq 40 dBZ
- Convection changes in nest
 - Reduced triggering
 - Slight better QPF, little impact on CAPE
- Cloud fraction changes
 - Reduced high (overcast) bias for high, thin cirrus
 - Improved threats & bias using newest formulation