Planck Weighted Transmittance and Correction of Solar Reflection for Broadband Infrared Satellite Channels

Abstract

Three approximations methods to calculate the level-tospace transmittance, used in fast radiative transfer model, are studied for five infrared broadband channels. Two of them are Planck-weighted transmittances, in which one involves the effective layer temperature of a layer (PW1), and the other involves temperatures at the interface between layers (PW2). The third one is not including temperature at all (ORD). It is found that under all circumstances method PW1 is better than method PW2 compared to the line-by-line (LBL) calculation. Planckweighted methods are more sensitive to atmospheric surface temperatures compared to ORD method.

Based on these simulations and comparisons, when the band correction is larger (greater than 1), PW1 method should be used to take account of the Planck radiance changing with the transmittance within the band spectral. When considering the solar contribution in daytime, correction of the solar reflection has been made for near infrared broadband channels ($\sim 3.7 \mu m$) when using PW1 transmittance. The solar transmittance is predicted by using explanatory variables as PW1 transmittance, secant of zenith angle, and surface temperature. With the correction, the error reduces to more reasonable level.

Methodology

In order to obtain the transmittance coefficients to predict the optical depth in fast models (such as CRTM, and RTTOV), the common approach is using the transmittances which are convolved the line-by-line transmittances by the instrument SRF, referred to Ordinary Transmittance (ORD):

$$\tau_i^{ORD} = \frac{\int \phi(v) \tau_i(v) dv}{\int \phi(v) dv}$$

Uses the layer temperature to modify the Planck-weighted transmittance for the level channel transmittance (PW1):

$$\tau_i^{PW1} = \frac{\int \phi(v) \overline{B(v, T_i)} \tau_i(v) dv}{\int \phi(v) \overline{B(v, T_i)} dv}$$

Uses the level temperature instead of the layer temperature to modify the Planck-weighted transmittance for the level channel transmittance (PW2):

$$\tau_i^{PW2} = \frac{\int \phi(v) B[v, T_i] \tau_i(v) dv}{\int \phi(v) B[v, T_i] dv}$$

¹CIRA, Colorado State University, Fort Collins, CO 80523 ²Joint Center for Satellite Data Assimilation, Camp Springs, MD 20746 ³NOAA/NESDIS Center for Satellite Applications and Research, Camp Springs, MD 20746 ⁴Perot Government Systems, Camp Springs, MD 20746

Band Correction for Channel Brightness Temperature

The channel center wavenumber ν_{i} is defined as the first spectral moment of the SRF

$$\gamma_i = \frac{\int \phi(v) v dv}{\int \int \phi(v) dv}$$

Assuming the channel BT is T_{e} , which is linearly predicted from the spectral radiance of a blackbody at temperature 7

 $T_e = b + b_1 T$

b, and b₁ are fitting coefficients, which can be determined from

$$\frac{c_1 v_i^3}{e^{c_2 v_i/T_e} - 1} = \frac{\int \phi(v) B[v, T] dv}{\int \phi(v) dv}$$

Results

Table 1. Characteristics of the five pseudo channels used in this study and the BT band correction coefficients for a 180-340 K temperature range.

Pseudo	Satellite Sensor	Spectral interval (cm ⁻¹)	Center Wavenumber (cm ⁻¹)	BT Band Correction Coefficients			
Channel				b	b ₁	RMS	
1	n/a	2456.0- 2683.3	2563.790	4.9724E-01	9.9929E-01	2.9985E-04	
2	NOAA-16 AVHRR3 channel 3	2222.7- 3355.7	2697.562	2.2687E+00	9.9642E-01	1.5148E-02	
3	GOES-12 Sounder channel 15	2225.8- 2271.1	2248.638	2.0287E-02	9.9997E-01	2.4825E-05	
4	METEOSAT-9 SEVIRI channel 4	2083.3- 3289.5	2568.259	3.3855E+00	9.9540E-01	4.5146E-03	
5	METEOSAT-9 SEVIRI channel 11	649.4- 877.2	750.660	3.1222E-01	9.9869E-01	6.8775E-03	

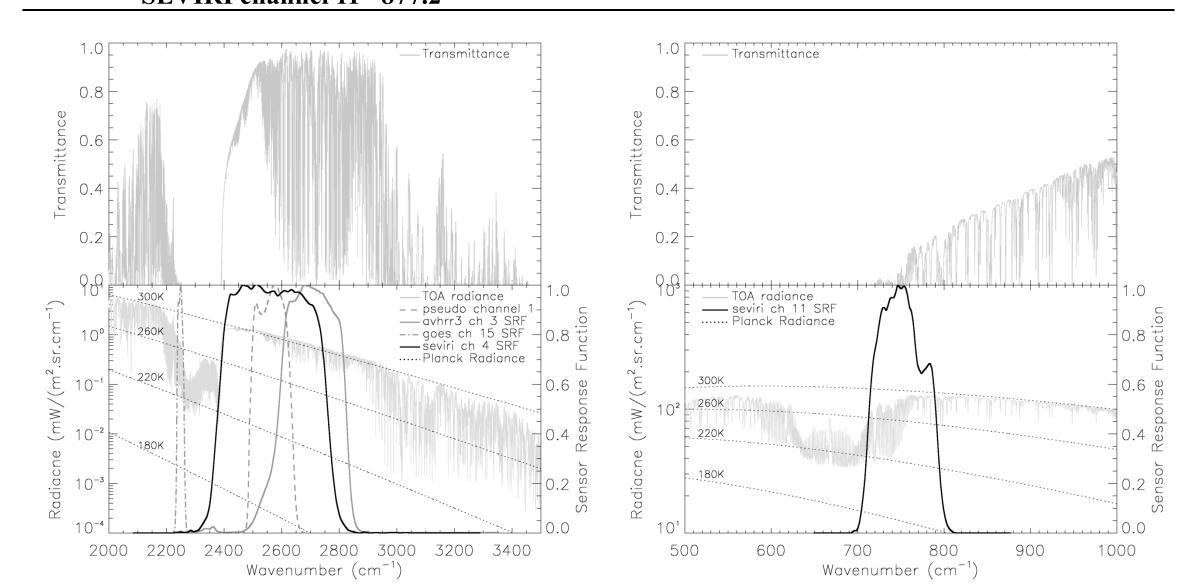
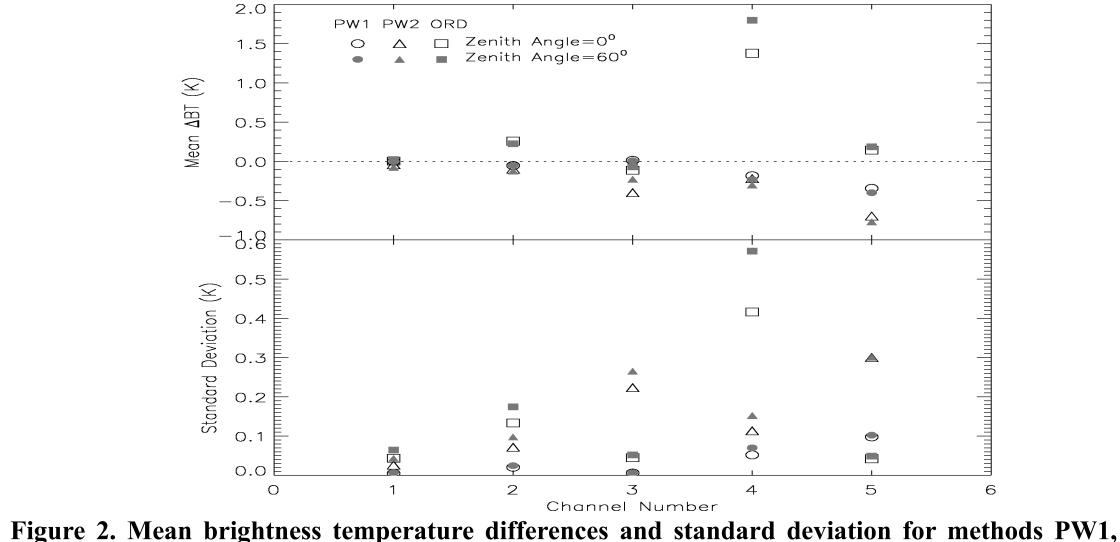
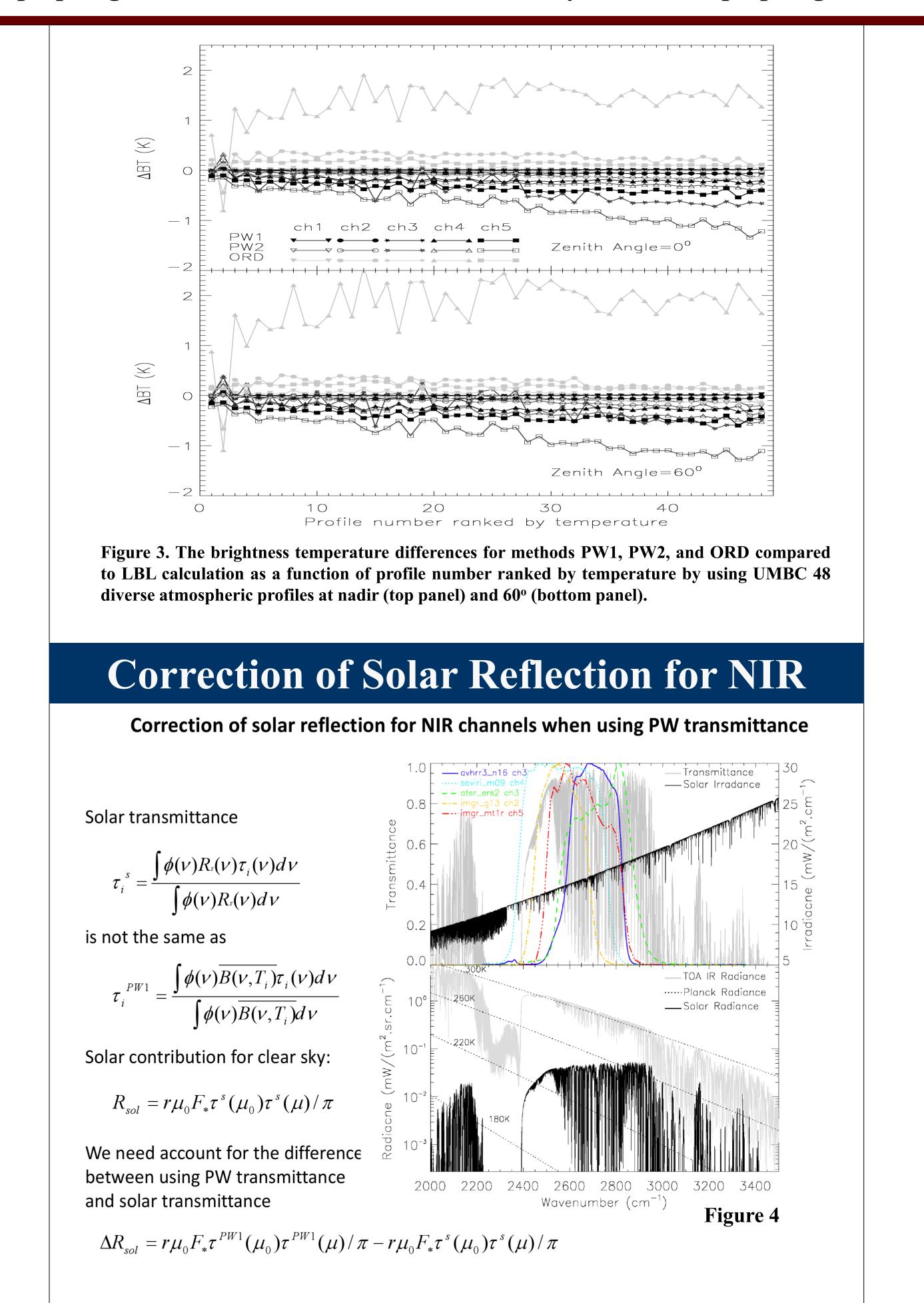



Figure 1. Channel sensor response functions, surface-to-space transmittance, TOA radiance for tropical model atmosphere, and theoretical Planck radiance curves for a number of atmospheric temperatures.


The Line-By-Line Radiative Transfer Model (LBLRTM) version 11.3 was employed to realistically simulate the monochromatic level-to-space transmittance. The spectral resolution for all the channels is set to 1×10^{-3} cm⁻¹. The variable gases for the input profiles include H₂O, CO₂ and O₃, and all other gases are treated as fix gases. Based on the above three convolved transmittances, the clear sky channel radiances can be calculated.

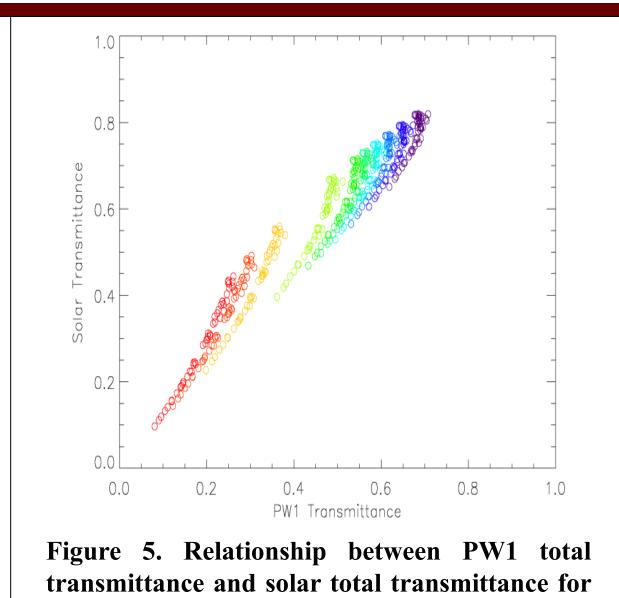
PW2, and ORD compared to LBL results for UMBC 48 diverse atmospheric profiles at nadir.

Yong Chen^{1,2}, Fuzhong Weng^{2,3}, Yong Han^{2,3}, and Quanhua Liu^{2,4}

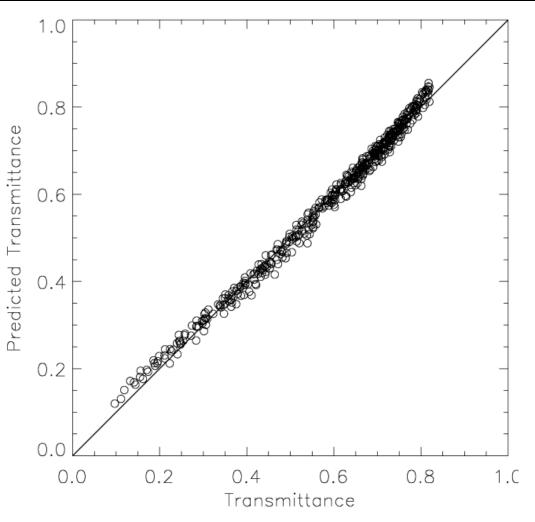
Contact info: Yong.Chen@noaa.gov

Predicting solar transmittance with PW transmittance

 $\tau_m^s = \beta_0 + \beta_1 \tau_m^{PW1} + \beta_2 \mu_m + \beta_3 (T_s)_m$, for m = 1, 2, ..., M


(1) Ten pairs of solar zenith angles and sensor zenith angles are used: $\mu = (1.0, 1.25, 1.50, 1.75, 2.0, 2.25, 3.0, 6.0, 9.0, 12.0)$ $\mu_0 = (1.0, 1.25, 1.50, 1.75, 2.0, 2.25, 3.0, 6.0, 9.0, 12.0)$

(2) Calculated the solar transmittances and PW transmittances for UBMC 48 profiles


(3) For each channel, we have 480 (10 angles X 48 profiles) total transmittances pairs

(4) Multiple linear regression method is used to predict the solar transmittance with explanatory variables as: PW transmittance, surface temperature, and secant of zenith angle.

METEOSAT-9 SEVIRI channel 4

PW1 transmittance versus solar transmittance for METEOSAT-9 SEVIRI channel 4

Table 2. Satellite sensor channels (~3.7 µm) for Planck-weighted transmittance.

Satellite	Spectral interval	Center	BT Band Correction Coefficients			
Sensor/channel	(cm ⁻¹)	Wavenumber (cm ⁻¹)	b	<i>b</i> ₁	Rank	
avhrr3_n16 ch3	2222.7-3355.7	2697.562	2.2687E+00	9.9642E-01	09	
avhrr3_n17 ch3	2418.4-2947.2	2670.800	1.7251E+00	9.9771E-01	05	
avhrr3_n18 ch3	2406.2-2977.9	2663.004	1.7627E+00	9.9767E-01	06	
avhrr3_n19 ch3	2418.4-3034.9	2671.660	1.7074E+00	9.9773E-01	04	
avhrr3_metop-a ch3	2382.1-3041.3	2689.894	2.1320E+00	9.9720E-01	08	
seviri_m08 ch4	2224.1-2913.2	2566.019	3.3476E+00	9.9540E-01	15	
seviri_m09 ch4	2083.3-3289.5	2568.259	3.3855E+00	9.9540E-01	16	
seviri_m10 ch4	2213.8-2947.1	2565.885	3.3204E+00	9.9547E-01	14	
aatsr_envisat ch1	2176.1-3120.5	2680.398	1.8322E+00	9.9747E-01	07	
atsr1_ers1 ch3	2426.1-3099.8	2693.365	2.3416E+00	9.9693E-01	10	
atsr2_ers2 ch3	2251.2-3293.9	2727.513	2.8438E+00	9.9614E-01	13	
imgr_g12 ch2	2419.1-2670.0	2564.822	6.9902E-01	9.9902E-01	01	
imgr_g13 ch2	2002.5-3333.5	2563.957	1.4800E+00	9.9794E-01	02	
imgr_g14 ch2	2227.1-2852.0	2573.925	1.5567E+00	9.9783E-01	03	
imgr_mt1r ch5	2381.7-3029.1	2653.665	2.3479E+00	9.9697E-01	11	
imgr mt2 ch4	2466.0- 2908.9	2684.116	2.4637E+00	9.9678E-01	12	

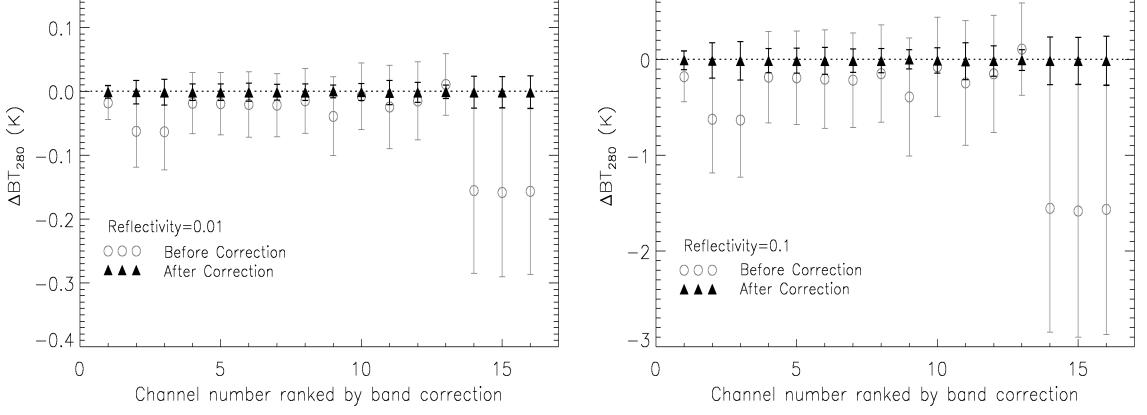


Figure 7. Statistics for solar reflection before and after correction for reflectivity 0.01 (top) and 0.1 (bottom). The symbol open circles and solid triangles are biases for before correction and after correction, respectively. The standard deviations are also shown with vertical bar.

Concluding Remarks

Based on these simulations and comparisons, when the band correction for channel brightness temperature is smaller, especially coefficient b is less than 1, method ORD should be used to calculate the transmittance instead of Planck-weighted transmittances due to the consistent BT differences to LBL. When the band correction coefficient b is great than 1, PW1 method should be used to take account of the Planck radiance changing with the transmittance within the band spectral to reduce the larger BT differences when using method ORD.

The solar reflection correction and PW transmittance are significant to accurately simulate the NIR broadband channel radiances from the sensors on the future national operational environmental satellite systems, in particular the Joint Polar Satellite System (JPSS) and the Geostationary Operational Environmental Satellite R-Series (GOES-R).