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CONCLUSIONS

Sulfate and black carbon top-of-atmosphere DRFs are offsetting

* BC DRF (+0.87 W/m2): % of all GHG RF; % of CO, RF Percent Change in Annual

. 504 DRF (-0.96 W/mz) Global-Mean Radiative Forcing
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Sulfate and black carbon surface DRFs are additive and negative BC 80, BC SO,
Cloud cover 78% -53% -22%  -52%
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High relative humidity 63% 63%

Black carbon absorbs
solar radiation

z> Aerosol Direct Radiative Forcings:
% physics and governing factors
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* This study investigates the competing and complimentary aspects of anthropogenic sulfate and
soot direct radiative forcing (DRF) in the context of a successful climate model — GFDL CM2.1

Sulfate purely
scatters solar
radiation

carbon; -0.96 W/m?) at the top-of-atmosphere (TOA) , whereas surface direct radiative forcings are both
negative and additive, exerting a combined forcing of -2.12 W/m?

* Results show that sulfate and black carbon global-mean DRFs evenly offset one another (0.87 W/m? black a 0 5 0 a O & O 0 a O & a a O 6

 May decrease strength of hydrological cycle

 We focus on factors governing the scattering-absorbing aerosol balance for the global-mean and
geographically — clouds, relative humidity, surface albedo

Sulfate DRF enhanced by relative humidity (63% globally) and reduced by clouds (~*50% globally)

1. Cloud Coverage ,
and high albedo (8% globally)

 Relationship depends on the vertical

distribution of the clouds and 2. Relative Humidity
aerosols in the atmospheric column

* Results show that without clouds, sulfate would dominate the aerosol TOA DRF balance, and without

sulfate hygroscopic growth from high relative humidity, black carbon would dominate the balance ix Black carbon DRF impacts different for top-of-atmosphere and surface — TOA affected more

« TOA —BC DRF enhanced by clouds (78% globally) and high albedo (10% globally)
e SFC-BC DRF reduced by clouds (22% globally) and high albedo (3% globally)

* Relative humidity affects hygroscopic
aerosols, such as ammonium sulfate,
and introduces an exponential impact

When clouds exist above the aerosol
layer, they block radiation from

penetrating through & on the specific extinction of sulfate as
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layer, radiation is scattered back into & particles swell
Black Carbon Sulfur Dioxide the aerosol layer, allowing absorbing * The larger the size of the particle, the : . L .
« Aerosols directly perturb Earth’s radiative balance by serosols to interact with more ore radiation it scatters or absorbs Include internal mixtures, black carbon deposition in snow, and indirect effects on clouds
scattering and absorbing shortwave and longwave radiation radiation and therefore enhancing

Perform sensitivity studies on the vertical distribution of clouds and aerosols in relation to one
another
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‘ ‘ top-of-atmosphere, which can affect Earth’s temperature = , : :
0 00505 1 5 10 15 20 25 30 40 50 75 100 000505 1 5 10 15 20 25 30 40 50 75 100 * Similar to the impact from low clouds, high albedo surfaces (deserts, snow and ice) reflect more

P e * Scattering aerosols (e.g. sulfate) enhance planetary albedo radiation into the aerosol layer, significantly enhancing positive DRFs from absorbing aerosols AcknowledgmentS'
’ o T ’ * Absorbing aerosols (e.g. black carbon) trap energy in climate |

 DRFs from scattering aerosols are reduced since the contrast between a low albedo surface and an
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MODEL DESCRIPTION RESULTS KEY: o "

The GFDL CM2.1 model is used in conjunction with MOZART to simulate the global distribution and

o . Control Case Experiments 1. Cloud Impact 2. Relative Humidity Impact 3. Surface Albedo Impact
radiative forcing of black carbon and sulfate aerosols
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