Towards the effective communication of weather and climate information—harnessing new technologies to integrate material from various sources on the web to generate new products

Harvey Stern, Belinda Campbell, Michael Efron and John Cornall-Reilly

Bureau of Meteorology, Australia

In the context of the American Meteorology Society’s (AMS) meeting Communicating Weather and Climate, the AMS observes that effective communication is essential for scientific research, education and serving the public. It proposes effective integration of material within the weather and climate enterprise, highlights the application of rapidly-changing technologies to bring new and powerful tools to disseminate and receive information, and notes efforts being undertaken to better communicate with different populations.

With this background, results of a "real-time" trial of a system used to generate forecasts, by mechanically integrating (that is, combining) judgmental (human) and automated predictions are documented.

The approach utilised by the system is to integrate material from various existing sources on the web to automatically generate improved forecasts for Melbourne and other central Victorian localities. These have yielded an increase in the accuracy of predictions for a broad range of weather elements.

The purpose of the paper is to discuss the application of the aforementioned system to automatically generate new and enhanced weather and climate products in English, Australian Indigenous, and other languages.

After a real-time trial of nearly five years, the mean square error (MSE) of the generated temperature predictions for Melbourne has averaged 0.72°C less than the MSE of corresponding official forecasts.

Looking further ahead, solid statistical relationships exist between historical monthly climate anomalies in Victoria and various measures of the ENSO, Indian Ocean Dipole, and Madden-Julian Oscillation phenomena.

Using this approach in a year-long real-time trial, the correlation coefficients between forecast probabilities that the Melbourne total monthly rainfall, minimum temperature and maximum temperature would be in tercile three, and the corresponding observed total monthly rainfall, minimum temperature and maximum temperature 1961-1990 deciles, were respectively +0.28, +0.25, and +0.32.

The probability that the three correlation coefficients would all be at least +0.25 by chance is 0.8%, suggesting that it is most unlikely that the skill displayed by the experimental monthly climate outlooks arose by chance.

Continuing the trial for a further six months saw the relationship between forecast and observed rainfall strengthen, whilst the relationships between forecast and observed temperatures weakened.

References:
