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Notation Experiments Discussion
State variables: X € R" Ensemble: x = [L lx, - ]e QR m We test the formulations in the Lorenz 1963 model observing directly In the following figures we show the background RMSE and analysis
the variables H = I, with 3 ensemble members and an observational RMSE for BGR09 in the infrequent observations case and & = 0.35 (in
Observations: y€& R’ Observation operator: H € R error covariance R=21. the optimal region). Of the total analysis RMSE, only the red portion
[ corresponds to the error due to the assimilation step, the rest is due the
Sample mean: X=— x, =— X 1 U=m"1,, The performances of BGR09 and BR10 are compared to that of the local ~orawth af thic arrar in the non-linear farecast window
m iz \ ensemble transform Kalman filter (LETKF, Hunt et al 2007). BGRO9 background RMSE (infreq obs) BGRO09 analysis RMSE (infreq obs)
Ensemble of perturbations: X = bc -xlx,=-xl-1x, ] U] 3
3
1 . 1 - We study the effect of two parameters:
Sample covariance:  P= IXX — IX [I U]X eR LETKF Bucy-based RMSE ",2] 2
Multiplicative inflation 1.463 RMSE®.
The superscript b indicates background and a indicates analysis. X' > (1 +p )X b v v 1 ! e

. q - - 0 0
Two new Bucy-based formulations for the analysis step, Number of steps for the numerical solution 5 % 5 N
of the analysis ODEs in pst (Euler-forward v

15 30 50 60
We review two new methods that extend the Kalman-Bucy Filter method used) pst steps tE ers?,:ﬁ;'lyn pst steps
(Kalman and Bucy, 1961) to the ensemble framework. Both formulate the ' Both formulations, in particular BGR09, are successful for short
analysis step through an ODE representlastion in “pseudo-time” (pst). Two cases are considered: assimilation windows, but not for long assimilation windows since BR10
sg?;:;zggfes ObSL’S"c’;itsns *Frequent observations corresponding to short assimilation windows becomes unstable and BGROS requires a large number of steps. This is the
’ - ‘ result of the stiffening of the ODE in pseudo-time.

t in which pertur| l)atmns gr(m lmearl\

3 different analysis schemes used

Assimilation step spanned in “pseudo-time” ) < s <1 Consider the analytical solution of the Bucy equation for covariance (scalar

In BGRO9 (Bergemann et al, 2009) the analysis equation for the version). ap_ P(s) ) P
ensemble of perturbations is: d 1 T T pel “PH'R'HP —  —p=—— f=—
- __2(m—1)XX H'R'HX ds P B+l o

The behavior of the solution is
sensitive to the ratio of background,’
variance over observational o
variance. For small values of 8 this”
1 = =r I = T — behavior is close to linear, few pst Sosl
—X :_71 x[1-Ulx H'R [EHX[IJFU]_Xl } . . steps are needed for an accurate o
m= pst steps inflation RMSE ical solution. As B b ”
_ — Y — LETKF 0.05 0.3105 numerical solution. As ecomes
Xx(0)=x e X =x(1) : : larger the solution stiffens and more *
3 0.05 0.3085

Transform-based alternatives gg?c? ° 5 0.06 0.3142 pst steps are required. This canbe T “"“’”' ce
- - observed in the figure to the right.

X(0kx" - Xx'=x()

= 1

In BR10 (Bergemman and Reich, 2010) the analysis step for the full
ensemble comes from the solution of a single ODE.

We propose a transform-based formulations in which the operations 'Infre('luent observations corresponding to long assimilation windows enpiclcammlive dirion The value of /3 depends on the
are performed in the ensemble space in which perturbations grow non-linearly. o [ ,,] .
: o gl frequency of observations and the
d 1 T S _1vb ! ' ' i i T ——BGRO9 15 pst - tr[R] 1 [h f [h H 1 H H d Th
For BGROY: X(s):X"W(s) Lw=- wwTy" RY'W e o7 éng of the assimilation w1r'1 ow. f:
or ’ W e R ds 2(m—-1) e o figure to the left shows the difference in
%05
€ w(0)=1 N we=w(1) %o the typical values of this ratio for
o3 frequent and infrequent obs. For
o . .
7For BR10 we use the Erevmllls equation plus o, 2 = frequent obs practically in all cases
_ - — g . .
2(s)=x"+ x"w(s) Ly L ywwi—ulk HR' HX 1+HX [1-Uli(s)-y : o L el 9905y B <1, while for infrequent obs
ds— m-1 = N " T e T
we R™ AN at least 25% of the cases have 8 >1 .
- wo=0 - w=w)
=a =b
X =X [r-vwe+w 1 ]+u] R e References
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