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We propose a transform-based formulations in which the operations 

are performed in the ensemble space.

For BGR09:

For BR10 we use the previous equation plus:

Advantages of the transform-based versions:

•Operations in a lower dimensional space.

•Once weights are found, post-processing procedures such as running in 

place or the quasi-outer loop (Kalnay and Yang 2010) can be performed 

with little cost to improve performance. 

The behavior of the solution is 

sensitive to the ratio of background 

variance over observational 

variance. For small values of       this 

behavior is close to linear, few pst

steps are needed for an accurate 

numerical solution. As      becomes 

larger the solution stiffens and more 

pst steps are required. This can be 

observed in the figure to the right.

In the following figures we show the background RMSE and analysis 

RMSE for BGR09 in the infrequent observations case and          (in 

the optimal region). Of the total analysis RMSE, only the red portion 

corresponds to the error due to the assimilation step, the rest is due the 

growth of this error in the non-linear forecast window .

State variables: Ensemble:

Observations: Observation operator:

Sample mean:

Ensemble of perturbations: 

Sample covariance:

The superscript b indicates background and a indicates analysis. 

Both formulations, in particular BGR09, are successful for short 

assimilation windows, but not for long assimilation windows since BR10 

becomes unstable and BGR09 requires a large number of steps. This is the 

result of the stiffening of the ODE in pseudo-time.

Consider the analytical solution of the Bucy equation for covariance (scalar 

version).

We test the formulations in the Lorenz 1963 model observing directly 

the variables          , with 3 ensemble members and an observational 

error covariance             .

The performances of BGR09 and BR10 are compared to that of the local 

ensemble transform Kalman filter (LETKF, Hunt et al 2007).

We study the effect of two parameters:

Two cases are considered:

•Frequent observations corresponding to short assimilation windows

in which perturbations grow linearly.

Infrequent observations corresponding to long assimilation windows

in which perturbations grow non-linearly.

We review two new methods that extend the Kalman-Bucy Filter

(Kalman and Bucy, 1961) to the ensemble framework. Both formulate the 

analysis step through an ODE representation in “pseudo-time” (pst).

In BGR09 (Bergemann et al, 2009) the analysis equation for the 

ensemble of perturbations is:

In BR10 (Bergemman and Reich, 2010) the analysis step for the full 

ensemble comes from the solution of a single ODE. 

Using the Using the KalmanKalman--BucyBucy filter in an ensemble framework filter in an ensemble framework 
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The value of      depends on the 

frequency of observations and the 

length of the assimilation window. The 

figure to the left shows the difference in 

the typical values of this ratio for 

frequent and infrequent obs. For 

frequent obs practically in all cases 

(99%)          , while for infrequent obs

at least 25% of the cases have          .
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