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Spatial Variation of Tropical Cyclone Position Difference]

Mean Tropical Cyclone Position and Intensity Differences

he emergence of reanalyses hg
Drovidea et of Grast dtiny for
studying interactions between tropical
cyclones (TCs) and their larger scal
environment. In spite of the increasin
usage of reanalyses for cimate scal
studies of TCs, there has been n
comprehensive examination of _th
representation within ~ thesdl
datasets. The implications of the accurai
depiction of TCs within reanalyses may
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potentially impacting the representation
of the general circulation on short fimel
cales. study seeks

quantiatively compare reanalysis TG

these parameters vary within and amon
reanalysis datasets.

Methodology

In this study, the fidelity of TC position,
intensity, and structure is_examine
within five reanalyses: the NCEP CFSR
(Saha et al. 2010), the ECMWF ERA-

JRA-25 (Onogi et al. 2007), a
NASA MERRA (Bosilovich et al. 2006).
TCs that are found equatorwards of
36°N within the NHC best-track datasef
(Jarvinen et al. 1984; Neumann et al
and JTWC best-irack dataset (Chi
2002) in the eastern North Pacifi
North Atlantic, and western North Pacific
between 1979-2001are chosen for stud|
Each besttrack TC within the reanalysi
is manually tracked using minimum mear)
sea-level pressure and maximum 925 hi
relative vorticity. The reanalysis position]
intensity are then compared to tho:
found in the best-track dataset.

In addition to examining these traditional
metrics, parameters from the cyclon:
phase space (Hart et al. 2003) an|
storm-relative composites of anomalief
are used 1o evaluate TC structure. Th
composites are constructed by bilinearl
interpolating each grid to a uniform|
horizontal resolution centered about th
manually tracked reanalysis TC position)
Each reanalysis TC is then composite
into one of four intensity bins according
t0its best-track intensiy.
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and western North Pacifc for each of the five reanalyses stratijethe four best-track intensit
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\Gglited by its distance from the gridpoint

r clarity,

f the
e vector displacement ofthe posiion diisce s inerpolated 1o a 4° by 4° grc il

vectors excluded for gridpoints with values of less than &80 The grid is smoothed once with
nine-point smoother.

in this study. The CFSR, ERA-40, ERA-I, JBAadd MERRA correspond witl
Coton oy O blag, Yot Qe Gy, ] RS SN EG 1 the Semmpic & denole]
by a white square printed within each box. The number of digyimamed TCs for each intensity|
bin is denoted at the top of each figure. The dashed lines cotiremean of each intensity bin fo
each reanalysis in order to help identify trends within dataset
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Figure 3 Plan view of the mean low-level

nine-point smoother.

m thermal wind (calculatedvismsin 900 hPa and 600 hPa) from the cyclor

phase space for the () CFSR, (b) ERA-40, (c) ERA-, (d) JBAaRA (¢) MERRA for TCs in the eastem North Pacifid,
North Atlantic, and western North Pacific. Mean I
the average of the low-level thermal wind weighted by itsafise from the gridpoint. The grid is smoothed once with|
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low-leveéninal wind is interpolated to a 2° by 2° grid represeniny
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Figure4: Vertical cross-section of composited storm-relative teragure anomalies (°C) in the () CFSR, (b) ERA-40, (c) ER@) JRA-25, and (¢) MERRA for
North Atlantic category 3-5 TCs. ({) Vertical cross-seotf storm-relative temperature anomalies for TC Hilda onder 1, 1964 (Hawkins and Rubsam 1968).
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TC wind profile retrievals (Hatsushika et al. 2006), res
reanalyses precudes the replication of the observedsigeat TCs.
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TCs, caution should be exercised when utiizing these @aidor calculations dependent or
resolving the absolute magnitude of quantities such as Tsity metrics.
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